Page 233 - Phase Space Optics Fundamentals and Applications
P. 233
214 Chapter Six
References
1. Z. Zalevsky and D. Mendlovic, Optical Super Resolution, Springer, 2002.
2. Z.Zalevsky,D.Mendlovic,andA.W.Lohmann,“Opticalsystemwithimproved
resolving power,” Progress Opt., vol. xl, Ch. 4 (1999).
3. W. T. Freeman, T. R. Jones, and E. C. Pasztor, “Example-based super-resolution,”
IEEE Comput. Graphics & Applic. 22: 56–65 (2002).
4. H. Chang, D-Y. Yeung, and Y. Xiong, “Super-resolution through neighbor em-
bedding,” IEEE Computer Vision and Pattern Recognition (CVPR), pp. 275–282
(2004).
5. M. Elad and A. Feuer, “Restoration of a single superresolution image from
several blurred, noisy, and undersampled measured images,” IEEE Trans. Image
Process. 6: 1646–1658 (1997).
6. A. Zomet and S. Peleg, “Multi-sensor super-resolution,” Sixth IEEE Workshop
on Applications of Computer Vision (WACV02), Orlando, Florida, US, Digital
Object Identifier: 10.1109/ACV.2002.1182134 2002, pp. 27–31.
7. E. Gur and Z. Zalevsky, “Single image digital super resolution: A revised
Gerschberg-Papoulis algorithm,” Int. J. Comput. Sci., 32: 2 (2008).
8. E. Abbe, “Beitrage zur theorie des mikroskops und der mikroskopischen
wahrnehmung,” Arch. Mikrosk. Anat. 9: 413-468 (1873).
9. W. Gartner and A. W. Lohmann, “An experiment going beyond Abbe’s limit of
diffraction,” Z. Physik 174: 18 (1963).
10. C. W. McCutchen, “Superresolution in Microscopy and the Abbe Resolution
Limit,” J. Opt. Soc. Am. 57: 1190 (1967).
11. W. Lukosz, “Optical systems with resolving powers exceeding the classical
limits.” J. Opt. Soc. Am. 56: 1463–1472 (1967).
12. M. Francon, “Amelioration de resolution d’optique,” Nuovo Cimento, Suppl. 9:
283–290 (1952).
13. D. Mendlovic, A. W. Lohmann, N. Konforti, I. Kiryuschev, and Z. Zalevsky,
“One dimensional superresolution optical system for temporally restricted ob-
jects,” Appl. Opt. 36: 2353–2359 (1997).
14. D. Mendlovic, I. Kiryuschev, Z. Zalevsky, A. W. Lohmann, and D. Farkas, “Two
dimensional super resolution optical system for temporally restricted objects,”
Appl. Opt. 36: 6687–6691 (1997).
15. A. Shemer, D. Mendlovic, Z. Zalevsky, J. Garcia, and P. G. Martinez, “Super
resolvingopticalsystemwithtimemultiplexingandcomputerdecoding,” Appl.
Opt. 38: 7245–7251 (1999).
16. A. I. Kartashev, “Optical systems with enhanced resolving power,” Opt. Spec-
trosc. 9: 204–206 (1960).
17. J. D. Armitage, A. W. Lohmann, and D. P. Parish, “Superresolution image form-
ing systems for objects with restricted lambda dependence,” Jpn. J. Appl. Phys.
4: 273–5 (1965).
18. S. A. Alexandrov and D. D. Sampson, “Spatial information transmission be-
yond a system’s diffraction limit using optical spectral encoding of the spatial
frequency,” J. Opt. A: Pure Appl. Opt. 10: 025304 (2008).
19. A. W. Lohmann and D. Paris, “Superresolution for nonbirefringent objects,” J.
Opt. Soc. Am. 3: 1037–43 (1964).
20. A. Zlotnik, Z. Zalevsky, and E. Marom, “Superresolution with nonorthogonal
polarization coding,” Appl. Opt. 44: 3705–3715 (2005).
21. J. Solomon, Z. Zalevsky, and D. Mendlovic, “Super resolution using code divi-
sion multiplexing,” Appl. Opt. 42: 1451–1462 (2003).
22. Z.Zalevsky,J.Solomon,andD.Mendlovic,“Geometricalsuperresolutionusing
code division multiplexing,” Appl. Opt. 42: 32–40 (2005).
23. Z. Zalevsky and A. Zlotnik, “Single Snap-Shot Double Field Optical Zoom,”
Opt. Exp. 13: 9858–9868 (2005).
24. Z. Zalevsky, E. Leith, and K. Mills, “Optical implementation of code division
multiplexing for super resolution. Part I. Spectroscopic method,” Opt. Comm.
195: 93–100 (2001).