Page 277 - Plant-Based Remediation Processes
P. 277

270                                                         P. Kotrba

            Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport
              by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes.
              Proc Natl Acad Sci USA 97:4991–4996
            Thomson JG, Yau YY, Blanvillain R, Nunes WM, Chiniquy D, Thilmony R, Ow DW (2009) ParA
              resolvase catalyzes site-specific excision of DNA from the Arabidopsis genome. Transgenic
              Res 18:237–248
            Turchi A, Tamantini I, Camussi AM, Racchi ML (2012) Expression of a metallothionein A1 gene
              of Pisum sativum in white poplar enhances tolerance and accumulation of zinc and copper.
              Plant Sci 183:50–56
            Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sato MH (2004) Systematic analysis
              of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells.
              Cell Struct Funct 29:49–65
            Ueno D, Iwashita T, Zhao FJ, Ma JF (2008) Characterization of Cd translocation and identification
              of the Cd form in xylem sap of the Cd-hyperaccumulator Arabidopsis halleri. Plant Cell
              Physiol 49:540–548
            van de Mortel JE, Villanueva LA, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Loren V,
              van Themaat E, Koornneef M, Aarts MGM (2006) Large expression differences in genes
              for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots
              of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens.
              Plant Physiol 142:1127–1147
            van de Mortel JE, Schat H, Moerland PD, Loren V, van Themaat E, van der Ent S, Blankestijn H,
              Ghandilyan A, Tsiatsiani S, Aarts MG (2008) Expression differences for genes involved in
              lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana
              and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 31:301–324
            Van Huysen T, Terry N, Pilon-Smits EAH (2004) Exploring the selenium phytoremediation
              potential of transgenic Indian mustard overexpressing ATP sulfurylase or cystathionine-
              gamma-synthase. Int J Phytoremediation 6:111–118
            Vas ˇa ´k M, Meloni G (2011) Chemistry and biology of mammalian metallothioneins. J Biol Inorg
              Chem 16:1067–1078
            Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in
              plants. New Phytol 181:759–776
            von Rozycki T, Nies DH (2009) Cupriavidus metallidurans: evolution of a metal-resistant
              bacterium. Antonie van Leeuwenhoek 96:115–139
            Vrbova M, Kotrba P, Horacek J, Smykal P, Svabova L, Vetrovcova M, Smykalova I, Griga M
              (2012) Enhanced accumulation of cadmium in Linum usitatissimum L. plants due to overpro-
              duction of metallothionein α-domain as a fusion to β-glucuronidase protein. Plant Cell Tiss
              Org. doi:10.1007/s11240-012-0239-1
            Wangeline AL, Burkhead JL, Hale KL, Lindblom SD, Terry N, Pilon M, Pilon-Smits EA (2004)
              Overexpression of ATP sulfurylase in Indian mustard: effects on tolerance and accumulation of
              twelve metals. J Environ Qual 33:54–60
            Weber M, Harada E, Vess C, von Roepenack-Lahaye E, Clemens S (2004) Comparative
              microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies
              nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccu-
              mulation factors. Plant J 37:269–281
            Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptome analysis of toxic metal
              responses in Arabidopsis thaliana and the Cd 2+  hypertolerant facultative metallophyte
              Arabidopsis halleri. Plant Cell Environ 29:950–963
            Wickner W (2010) Membrane fusion: five lipids, four SNAREs, three chaperones, two
              nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu Rev Cell Dev Biol 26:
              115–136
            Woo OK, Ham TH, Ji HS, Choi MS, Jiang W, Chu SH, Piao R, Chin JH, Kim JA, Park BS, Seo HS,
              Jwa NS, McCouch S, Koh HJ (2008) Inactivation of the UGPase1 gene causes genic male
              sterility and endosperm chalkiness in rice (Oryza sativa L.). Plant J 54:190–204
   272   273   274   275   276   277   278   279   280   281   282