Page 277 - Plant-Based Remediation Processes
P. 277
270 P. Kotrba
Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport
by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes.
Proc Natl Acad Sci USA 97:4991–4996
Thomson JG, Yau YY, Blanvillain R, Nunes WM, Chiniquy D, Thilmony R, Ow DW (2009) ParA
resolvase catalyzes site-specific excision of DNA from the Arabidopsis genome. Transgenic
Res 18:237–248
Turchi A, Tamantini I, Camussi AM, Racchi ML (2012) Expression of a metallothionein A1 gene
of Pisum sativum in white poplar enhances tolerance and accumulation of zinc and copper.
Plant Sci 183:50–56
Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sato MH (2004) Systematic analysis
of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells.
Cell Struct Funct 29:49–65
Ueno D, Iwashita T, Zhao FJ, Ma JF (2008) Characterization of Cd translocation and identification
of the Cd form in xylem sap of the Cd-hyperaccumulator Arabidopsis halleri. Plant Cell
Physiol 49:540–548
van de Mortel JE, Villanueva LA, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Loren V,
van Themaat E, Koornneef M, Aarts MGM (2006) Large expression differences in genes
for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots
of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens.
Plant Physiol 142:1127–1147
van de Mortel JE, Schat H, Moerland PD, Loren V, van Themaat E, van der Ent S, Blankestijn H,
Ghandilyan A, Tsiatsiani S, Aarts MG (2008) Expression differences for genes involved in
lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana
and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 31:301–324
Van Huysen T, Terry N, Pilon-Smits EAH (2004) Exploring the selenium phytoremediation
potential of transgenic Indian mustard overexpressing ATP sulfurylase or cystathionine-
gamma-synthase. Int J Phytoremediation 6:111–118
Vas ˇa ´k M, Meloni G (2011) Chemistry and biology of mammalian metallothioneins. J Biol Inorg
Chem 16:1067–1078
Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in
plants. New Phytol 181:759–776
von Rozycki T, Nies DH (2009) Cupriavidus metallidurans: evolution of a metal-resistant
bacterium. Antonie van Leeuwenhoek 96:115–139
Vrbova M, Kotrba P, Horacek J, Smykal P, Svabova L, Vetrovcova M, Smykalova I, Griga M
(2012) Enhanced accumulation of cadmium in Linum usitatissimum L. plants due to overpro-
duction of metallothionein α-domain as a fusion to β-glucuronidase protein. Plant Cell Tiss
Org. doi:10.1007/s11240-012-0239-1
Wangeline AL, Burkhead JL, Hale KL, Lindblom SD, Terry N, Pilon M, Pilon-Smits EA (2004)
Overexpression of ATP sulfurylase in Indian mustard: effects on tolerance and accumulation of
twelve metals. J Environ Qual 33:54–60
Weber M, Harada E, Vess C, von Roepenack-Lahaye E, Clemens S (2004) Comparative
microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies
nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccu-
mulation factors. Plant J 37:269–281
Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptome analysis of toxic metal
responses in Arabidopsis thaliana and the Cd 2+ hypertolerant facultative metallophyte
Arabidopsis halleri. Plant Cell Environ 29:950–963
Wickner W (2010) Membrane fusion: five lipids, four SNAREs, three chaperones, two
nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu Rev Cell Dev Biol 26:
115–136
Woo OK, Ham TH, Ji HS, Choi MS, Jiang W, Chu SH, Piao R, Chin JH, Kim JA, Park BS, Seo HS,
Jwa NS, McCouch S, Koh HJ (2008) Inactivation of the UGPase1 gene causes genic male
sterility and endosperm chalkiness in rice (Oryza sativa L.). Plant J 54:190–204