Page 276 - Plant-Based Remediation Processes
P. 276
12 Transgenic Approaches to Enhance Phytoremediation of Heavy Metal-Polluted Soils 269
Salt DE, Prince RC, Baker AJM, Raskin I, Pickering IJ (1999) Zinc ligands in the metal
hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy.
Environ Sci Technol 33:713–717
Sancenon V, Puig S, Mateu-Andres I, Dorcey E, Thiele DJ, Penarrubia L (2004) The Arabidopsis
copper transporter COPT1 functions in root elongation and pollen development. J Biol Chem
279:15348–15355
Sarwar N, Saifullah, Malhi SS, Zia MH, Naeem A, Bibi S, Farid G (2010) Role of mineral nutrition
in minimizing cadmium accumulation by plants. Sci Food Agric 90:925–937
Sasaki Y, Hayakawa T, Inoue C, Miyazaki A, Silver S, Kusano T (2006) Generation of mercury-
hyperaccumulating plants through transgenic expression of the bacterial mercury membrane
transport protein MerC. Transgenic Res 15:615–625
Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker PM (2002) The role of phytochelatins
in constitutive and adaptive heavy metal tolerances in hyperaccumulator and nonhyperac-
cumulator metallophytes. J Exp Bot 53:2381–2392
Schuler M, Bauer P (2011) Heavy metals need assistance: the contribution of nicotianamine to
metal circulation throughout the plant and the Arabidopsis NAS Gene Family. Front Plant Sci
2:69
Schu ¨tzendu ¨bel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxida-
tive stress and protection by mycorrhization. J Exp Bot 53:1351–1365
Sekhar K, Priyanka B, Reddy VD, Rao KV (2011) Metallothionein 1 (CcMT1) of pigeonpea
(Cajanus cajan L.) confers enhanced tolerance to copper and cadmium in Escherichia coli and
Arabidopsis thaliana. Environ Exp Bot 72:131–139
Shigaki T, Barkla BJ, Miranda-Vergara MC, Zhao J, Pantoja O, Hirschi KD (2005) Identification
of a crucial histidine involved in metal transport activity in the Arabidopsis cation/H +
exchanger CAX1. J Biol Chem 280:30136–30142
Shin LJ, Lo JC, Teh KC (2012) Copper chaperone antioxidant protein 1 is essential for copper
homeostasis. Plant Physiol. doi:10.1104/pp. 112.195974
Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL,
Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D,
Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory
PD, Urnov FD (2009) Precise genome modification in the crop species Zea mays using zinc-
finger nucleases. Nature 459:437–441
Silver S, Phung L (2005) A bacterial view of the periodic table: genes and proteins for toxic
inorganic ions. J Ind Microbiol Biotechnol 32:587–605
Singh OV, Ghai S, Paul D, Jain RK (2006) Genetically modified crops: success, safety assessment,
and public concern. Appl Microbiol Biotechnol 71:598–607
Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y
(2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants.
Nat Biotechnol 21:914–919
Sun Q, Ye ZH, Wang XR, Wong MH (2007) Cadmium hyperaccumulation leads to an increase of
glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii.
J Plant Physiol 164:1489–1498
Sunkar R, Kaplan B, Bouche ´ N, Arazi T, Dolev D, Talke IN, Maathuis FJ, Sanders D, Bouchez D,
Fromm H (2000) Expression of a truncated tobacco NtCBP4 channel in transgenic plants and
disruption of the homologous Arabidopsis CNGC1 gene confer Pb tolerance. Plant J 24:
533–542
Talke I, Hanikenne M, Kra ¨mer U (2006) Zinc dependent global transcriptional control, transcrip-
tional de-regulation and higher gene copy number for genes in metal homeostasis of the
hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167
Thomas JC, Davies EC, Malick FK, Endreszl C, Williams CR, Abbas M, Petrella S, Swisher K,
Perron M, Edwards R, Osenkowski P, Urbanczyk N, Wiesend WN, Murray KS (2003) Yeast
metallothionein in transgenic tobacco promotes copper uptake from contaminated soils.
Biotechnol Prog 19:273–280

