Page 274 - Plant-Based Remediation Processes
P. 274

12  Transgenic Approaches to Enhance Phytoremediation of Heavy Metal-Polluted Soils  267

            Mari S, Gendre D, Pianelli K, Ouerdane L, Lobinski R, Briat J-F, Lebrun M, Czernic P (2006)
              Root-to-shoot long-distance circulation of nicotianamine and nicotianamine–nickel chelates in
              the metal hyperaccumulator Thlaspi caerulescens. J Exp Bot 57:4111–4122
            Martı ´nez M, Bernal P, Almela C, Ve ´lez D, Garcı ´a-Agustı ´n P, Serrano R, Navarro-Avin ˜o ´ J (2006)
              An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens,
              with yields of 100 times more biomass in mine soils. Chemosphere 64:478–485
            Mendoza-Co ´zatl DG, Butko E, Springer F, Torpey JW, Komives EA, Kehr J, Schroeder JI (2008)
              Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of
              Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the
              effect of cadmium on iron translocation. Plant J 54:249–259
            Mendoza-Co ´zatl DG, Zhai Z, Jobe TO, Akmakjian GZ, Song WY, Limbo O, Russell MR,
              Kozlovskyy VI, Martinoia E, Vatamaniuk OK, Russell P, Schroeder JI (2010) Tonoplast-
              localized Abc2 transporter mediates phytochelatin accumulation in vacuoles and confers
              cadmium tolerance. J Biol Chem 285:40416–40426
            Meyer AJ, Fricker MD (2002) Control of demand-driven biosynthesis of glutathione in green
              Arabidopsis suspension culture cells. Plant Physiol 130:1927–1937
            Meyer CL, Verbruggen N (2012) The use of the model species Arabidopsis halleri towards
              phytoextraction of cadmium polluted soils. Nat Biotechnol. doi:10.1016/j.nbt.2012.07.009
            Migeon A, Blaudez D, Wilkins O, Montanini B, Campbell MM, Richaud P, Thomine S, Chalot M
              (2010) Genome-wide analysis of plant metal transporters, with an emphasis on poplar.
              Cell Mol Life Sci 67:3763–3784
            Mills RF, Krijger GC, Baccarini PJ, Hall JL, Williams LE (2003) Functional expression of
              AtHMA4, a P-1B-type ATPase of the Zn/Co/Cd/Pb subclass. Plant J 35:164–176
            Mills RF, Francini A, da Rocha PSCF, Baccarini PJ, Aylett M, Krijger GC, Williams LE (2005)
              The plant P-1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification
              of transition metals supplied at elevated levels. FEBS Lett 579:783–791
            Milner MJ, Craft E, Yamaji N, Koyama E, Ma JF, Kochian LV (2012) Characterization of the high
              affinity Zn transporter from Noccaea caerulescens, NcZNT1, and dissection of its promoter for
              its role in Zn uptake and hyperaccumulation. New Phytol 195:113–123
            Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals.
              Biotechnol Adv 29:645–653
            Misra S, Gedamu L (1989) Heavy metal tolerant transgenic Brassica napus L. and Nicotiana
              tabaccum L. plants. Theor Appl Genet 78:161–168
            Montanini B, Blaudez D, Jeandroz S, Sanders D, Chalot M (2007) Phylogenetic and functional
              analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of
              substrate specificity. BMC Genomics 8:107
            Moreno FN, Anderson CWN, Stewart RB, Robinson BH (2005) Mercury volatilization and
              phytoextraction from base-metal mine tailings. Environ Pollut 136:341–352
            Murphy A, Taiz L (1995) Comparison of metallothionein gene expression and nonprotein thiols in
              ten Arabidopsis ecotypes: correlation with copper tolerance. Plant Physiol 109:945–954
            Nagata T, Ishikawa C, Kiyono M, Pan-Hou H (2006a) Accumulation of mercury in transgenic
              tobacco expressing bacterial polyphosphate. Biol Pharm Bull 29:2350–2353
            Nagata T, Kiyono M, Pan-Hou H (2006b) Engineering expression of bacterial polyphosphate
              kinase in tobacco for mercury remediation. Appl Microbiol Biotechnol 72:777–782
            Nagata T, Nakamura A, Akizawa T, Pan-Hou H (2009) Genetic engineering of transgenic tobacco
              for enhanced uptake and bioaccumulation of mercury. Biol Pharm Bull 32:1491–1495
            Nagata T, Morita H, Akizawa T, Pan-Hou H (2010) Development of a transgenic tobacco plant for
              phytoremediation of methylmercury pollution. Appl Microbiol Biotechnol 87:781–786
            Nair A, Juwarkar AA, Singh SK (2007) Production and characterization of siderophores and its
              application in arsenic removal from contaminated soil. Water Air Soil Pollut 180:199–212
            Nair S, Joshi-Saha A, Singh S, Ramachandran V, Singh S, Thorat V, Kaushik CP, Eapen S,
              D’Souza SF (2012) Evaluation of transgenic tobacco plants expressing a bacterial Co-Ni
              transporter for acquisition of cobalt. J Biotechnol. doi:10.1016/j.jbiotec.2012.07.191
   269   270   271   272   273   274   275   276   277   278   279