Page 270 - Plant-Based Remediation Processes
P. 270
12 Transgenic Approaches to Enhance Phytoremediation of Heavy Metal-Polluted Soils 263
Chaney RL, Angle JS, McIntosh MS, Reeves RD, Li YM, Brewer EP, Chen K-Y, Rosenberg RJ,
Perner H, Synkowski EC, Broadhurst CL, Wang S, Baker AJM (2005) Using hyper-
accumulator plants to phytoextract soil Ni and Cd. Z Naturforsch 60:190–198
Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved
understanding of hyperaccumulation yields commercial phytoextraction and phytomining
technologies. J Environ Qual 36:1429–1443
Che D, Meagher RB, Heaton ACP, Lima A, Rugh CL, Merkle SA (2003) Expression of mercuric
ion reductase in eastern cottonwood (Populus deltoides) confers mercuric ion reduction and
resistance. Plant Biotechnol J 1:311–319
Chen Y, Li XD, Shen ZG (2004) Leaching and uptake of heavy metals by ten different species of
plants during an EDTA-assisted phytoextraction process. Chemosphere 57:187–196
Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance
in plants. Biochimie 88:1707–1719
Clemens S, Simm C (2003) Schizosaccharomyces pombe as a model for metal homeostasis in plant
cells: the phytochelatin-dependent pathway is the main cadmium detoxification mechanism.
New Phytol 159:323–330
Clemens S, Palmgren M, Kra ¨mer U (2002) A long way ahead: understanding and engineering
plant metal accumulation. Trends Plant Sci 7:309–315
Couselo JL, Navarro-Avn ˜o ´ J, Ballester A (2010) Expression of the phytochelatin synthase TaPCS1
in transgenic aspen, insight into the problems and qualities in phytoremediation of Pb. Int J
Phytoremediation 12:358–370
Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Metallothionein: the multipurpose protein. Cell
Mol Life Sci 59:627–647
Cunningham SC, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends
Biotechnol 13:393–397
Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF (2000) Involvement of Nramp1 from
Arabidopsis thaliana in iron transport. Biochem J 347:7497–7455
Czako ´ M, Feng X, He Y, Liang D, Ma ´rton L (2006) Transgenic Spartina alterniflora for
phytoremediation. Environ Geochem Health 28:103–110
Davison J (2005) Risk mitigation of genetically modified bacteria and plants designed for
bioremediation. J Ind Microbiol Biotechnol 32:639–650
de Borne FD, Elmayan T, de Roton C, de Hys L, Tepfer M (1998) Cadmium partitioning in
transgenic tobacco plants expressing mammalian metallothionein gene. Mol Breed 4:83–90
Dixit P, Singh S, Vancheeswaran R, Patnala K, Eapen S (2010) Expression of a Neurospora crassa
zinc transporter gene in transgenic Nicotiana tabacum enhances plant zinc accumulation
without co-transport of cadmium. Plant Cell Environ 33:1697–1707
Domı ´nguez-Solı ´s JR, Lo ´pez-Martı ´n MC, Ager FJ, Ynsa MD, Romero LC, Gotor C (2004)
Increased cysteine availability is essential for cadmium tolerance and accumulation in
Arabidopsis thaliana. Plant Biotechnol J 2:469–476
Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes.
New Phytol 179:318–333
Evans K, Gatehouse J, Lindsay W, Shi J, Tommey A, Robinson N (1992) Expression of the pea
metallothionein-like gene PsMTa in Escherichia coli and Arabidopsis thaliana and analysis of
trace metal ion accumulation: implications for PsMTa function. Plant Mol Biol 20:1019–1028
Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface
between stress perception and physiological responses. Plant Cell 17:1866–1875
Freeman JL, Salt DE (2007) The metal tolerance profile of Thlaspi goesingense is mimicked in
Arabidopsis thaliana heterologously expressing serine acetyl-transferase. BMC Plant Biol 7:63
Freeman JL, Garcia D, Kim D, Hopf A, Salt DE (2005) Constitutively elevated salicylic acid
signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators.
Plant Physiol 137:1082–1091
Freisinger E (2008) Plant MTs-long neglected members of the metallothionein superfamily.
Dalton Trans 47:6663–6675