Page 270 - Plant-Based Remediation Processes
P. 270

12  Transgenic Approaches to Enhance Phytoremediation of Heavy Metal-Polluted Soils  263

            Chaney RL, Angle JS, McIntosh MS, Reeves RD, Li YM, Brewer EP, Chen K-Y, Rosenberg RJ,
              Perner H, Synkowski EC, Broadhurst CL, Wang S, Baker AJM (2005) Using hyper-
              accumulator plants to phytoextract soil Ni and Cd. Z Naturforsch 60:190–198
            Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved
              understanding of hyperaccumulation yields commercial phytoextraction and phytomining
              technologies. J Environ Qual 36:1429–1443
            Che D, Meagher RB, Heaton ACP, Lima A, Rugh CL, Merkle SA (2003) Expression of mercuric
              ion reductase in eastern cottonwood (Populus deltoides) confers mercuric ion reduction and
              resistance. Plant Biotechnol J 1:311–319
            Chen Y, Li XD, Shen ZG (2004) Leaching and uptake of heavy metals by ten different species of
              plants during an EDTA-assisted phytoextraction process. Chemosphere 57:187–196
            Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance
              in plants. Biochimie 88:1707–1719
            Clemens S, Simm C (2003) Schizosaccharomyces pombe as a model for metal homeostasis in plant
              cells: the phytochelatin-dependent pathway is the main cadmium detoxification mechanism.
              New Phytol 159:323–330
            Clemens S, Palmgren M, Kra ¨mer U (2002) A long way ahead: understanding and engineering
              plant metal accumulation. Trends Plant Sci 7:309–315
            Couselo JL, Navarro-Avn ˜o ´ J, Ballester A (2010) Expression of the phytochelatin synthase TaPCS1
              in transgenic aspen, insight into the problems and qualities in phytoremediation of Pb. Int J
              Phytoremediation 12:358–370
            Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Metallothionein: the multipurpose protein. Cell
              Mol Life Sci 59:627–647
            Cunningham SC, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends
              Biotechnol 13:393–397
            Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF (2000) Involvement of Nramp1 from
              Arabidopsis thaliana in iron transport. Biochem J 347:7497–7455
            Czako ´ M, Feng X, He Y, Liang D, Ma ´rton L (2006) Transgenic Spartina alterniflora for
              phytoremediation. Environ Geochem Health 28:103–110
            Davison J (2005) Risk mitigation of genetically modified bacteria and plants designed for
              bioremediation. J Ind Microbiol Biotechnol 32:639–650
            de Borne FD, Elmayan T, de Roton C, de Hys L, Tepfer M (1998) Cadmium partitioning in
              transgenic tobacco plants expressing mammalian metallothionein gene. Mol Breed 4:83–90
            Dixit P, Singh S, Vancheeswaran R, Patnala K, Eapen S (2010) Expression of a Neurospora crassa
              zinc transporter gene in transgenic Nicotiana tabacum enhances plant zinc accumulation
              without co-transport of cadmium. Plant Cell Environ 33:1697–1707
            Domı ´nguez-Solı ´s JR, Lo ´pez-Martı ´n MC, Ager FJ, Ynsa MD, Romero LC, Gotor C (2004)
              Increased cysteine availability is essential for cadmium tolerance and accumulation in
              Arabidopsis thaliana. Plant Biotechnol J 2:469–476
            Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes.
              New Phytol 179:318–333
            Evans K, Gatehouse J, Lindsay W, Shi J, Tommey A, Robinson N (1992) Expression of the pea
              metallothionein-like gene PsMTa in Escherichia coli and Arabidopsis thaliana and analysis of
              trace metal ion accumulation: implications for PsMTa function. Plant Mol Biol 20:1019–1028
            Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface
              between stress perception and physiological responses. Plant Cell 17:1866–1875
            Freeman JL, Salt DE (2007) The metal tolerance profile of Thlaspi goesingense is mimicked in
              Arabidopsis thaliana heterologously expressing serine acetyl-transferase. BMC Plant Biol 7:63
            Freeman JL, Garcia D, Kim D, Hopf A, Salt DE (2005) Constitutively elevated salicylic acid
              signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators.
              Plant Physiol 137:1082–1091
            Freisinger E (2008) Plant MTs-long neglected members of the metallothionein superfamily.
              Dalton Trans 47:6663–6675
   265   266   267   268   269   270   271   272   273   274   275