Page 271 - Plant-Based Remediation Processes
P. 271
264 P. Kotrba
Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and
radionuclides by fungi, bio-weathering and bioremediation. Mycol Res 111:3–49
Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology
156:609–643
Gendre D, Czernic P, Cone ´je ´ro G, Pianelli K, Briat J-F, Lebrun M, Mari S (2007) TcYSL3, a
member of the YSL gene family from the hyperaccumulator Thlaspi caerulescens, encodes a
nicotianamine-Ni/Fe transporter. Plant J 49:1–15
Gilbertson L (2003) Cre-lox recombination: Cre-ative tools for plant biotechnology. Trends
Biotechnol 21:550–555
Gisbert C, Ros R, De Haro A, Walker DJ, Pilar Bernal M, Serrano R, Navarro-Avin ˜o ´ J (2003) A
plant genetically modified that accumulates Pb is especially promising for phytoremediation.
Biochem Biophys Res Commun 303:440–445
Guo J, Dai X, Xu W, Ma M (2008a) Overexpressing gsh1 and AsPCS1 simultaneously increases
the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere
72:1020–1026
Guo WJ, Meetam M, Goldsbrough PB (2008b) Examining the specific contributions of individual
Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146:
1697–706
Hammond JP, Bowen HC, White PJ, Mills V, Pyke KA, Baker AJ, Whiting SN, May ST,
Broadley MR (2006) A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot
transcriptomes. New Phytol 170:239–260
Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Kra ¨mer U
(2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication
of HMA4. Nature 453:391–395
Haque S, Zeyaullah M, Nabi G, Srivastava PS, Ali A (2010) Transgenic tobacco plant expressing
environmental E. coli merA gene for enhanced volatilization of ionic mercury. J Microbiol
Biotechnol 20:917–924
Hasegawa I, Terada E, Sunairi M, Wakita H, Shinmachi F, Noguchi A, Nakajima M, Yazaki J
(1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast
metallothionein gene (CUP1). Plant Soil 196:277–281
Hassinen VH, Tervahauta AI, Halimaa P, Plessl S, Pera ¨niemi H, Aarts MGM, Servomaa K,
Ka ¨renlampi SO (2007) Isolation of Zn-responsive genes from two accessions of the
hyperaccumulator plant Thlaspi caerulescens. Planta 225:977–989
Haydon MJ, Cobbett CS (2007) Transporters of ligands for essential metal ions in plants.
New Phytol 174:499–506
He YK, Sun JG, Feng XZ, Czako ´ M, Ma ´rton L (2001) Differential mercury volatilization by
tobacco organs expressing a modified bacterial merA gene. Cell Res 11:231–236
Heaton ACP, Rugh CL, Kim T, Wang NJ, Meagher RB (2003) Toward detoxifying mercury-
polluted aquatic sediments with rice genetically engineered for mercury resistance.
Environ Toxicol Chem 22:2940–2947
Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2
in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol 124:
125–133
Hsieh J, Chen C, Chiu M, Chein M, Chang J, Endo G, Huang GG (2009) Expressing a bacterial
mercuric ion binding protein in plant for phytoremediation of heavy metals. J Hazard Mater
161:920–925
Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and
translocation. New Phytol 134:75–84
Ike A, Sriprang R, Ono H, Murooka Y, Yamashita M (2007) Bioremediation of cadmium
contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with
the MTL4 and the PCS genes. Chemosphere 66:1670–1676

