Page 87 - Plant-Based Remediation Processes
P. 87
4 Remediation Mechanisms of Tropical Plants for Lead-Contaminated Environment 75
Ground-Water Remediation Technologies Analysis Center, GWRTAC (1997) Remediation of
metals-contaminated soils and groundwater. Technology Evaluation Report, TE-97-01,
GWRTAC-E Series, Pittsburgh, PA 15238. http://www.gwrtac.org
Grover P, Rekhadevi P, Danadevi K, Vuyyuri S, Mahboob M, Rahman M (2010) Genotoxicity
evaluation in workers occupationally exposed to lead. Int J Hyg Environ Health 213:99–106
Gupta DK, Nicoloso FT, Schetinger M, Rossato LV, Pereira L, Castro GY, Srivastava S,
Tripathi RD (2009) Antioxidant defense mechanism in hydroponically grown Zea mays
seedlings under moderate lead stress. J Hazard Mater 172:479–484
Gupta DK, Huang HG, Yang XE, Razafindrabe BH, Inouhe M (2010) The detoxification of lead in
Sedum alfredii H. is not related to phytochelatins but the glutathione. J Hazard Mater 177:
437–444
Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel
in plant nutrition. Science 280:918–921
Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and
translocation. New Phytol 134:75–84
Huang JW, Chen JJ, Berti WR, Cunningham SD (1997) Phytoremediation of lead-contaminated
soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–880
Interstate Technology and Regulatory Cooperation (ITRC) Work Group (1997) Emerging
technologies for the phytoremediation of metals in soils (viii). http://www.itrcweb.org.
Accessed 19 July 2012
Islam E, Liu D, Li T, Yang X, Jin X, Mahmood Q, Tian S, Li J (2008) Effect of Pb toxicity on leaf
growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater
154:914–926
Jabeen R, Ahmad A (2012) Phytoremediation of heavy metals: physiological and molecular
mechanisms. Bot Rev 75(4):339–364
Jiang W, Liu D (2010) Pb-induced cellular defense system in the root meristematic cells of
Allium sativum L. BMC Plant Biol 10:40–40
Jung MC, Thornton I (1996) Heavy metal contamination of soils and plants in the vicinity of a
lead-zinc mine korea. Appl Geochem 11:53–59
Kim YY, Yang YY, Lee Y (2002) Pb and Cd uptake in rice roots. Physiol Planta 116:368–372
Kim D, Bovet L, Kushnir S, Noh EW, Martinoia E, Lee Y (2006) AtATM3 is involved in heavy
metal resistance in Arabidopsis. Plant Physiol 140:922–932
Kirpichtchikova TA, Manceau A, Spadini L, Panfili F, Marcus MA, Jacquet T (2006) Speciation
and solubility of heavy metals in Geochimica et Cosmochimica contaminated soil using X-ray
microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling.
Geochim Cosmochim Acta 70:2163–2190
Kohler C, Merkle T, Neuhaus G (1999) Characterization of a novel gene family of putative cyclic
nucleotide and calmodulin-regulated ion channels in Arabidopsis thaliana. Plant J 18:97–104
Kopittke PM, Asher CJ, Kopittke RA, Menzies NW (2008) Prediction of Pb speciation in
concentrated and dilute nutrient solutions. Environ Pollut 153:548–554
Krzesłowska M, Lenartowska M, Mellerowicz EJ, Samardakiewicz S, Wozny A (2009) Pectinous
cell wall thickenings formation: a response of moss protonemata cells to lead. Environ Exp Bot
65:119–131
Krzesłowska M, Lenartowska M, Samardakiewicz S, Bilski H, Wozny A (2010) Lead deposited in
the cell wall of Funaria hygrometrica protonemata is not stable: a remobilization can occur.
Environ Pollut 158:325–338
Liu T, Liu S, Guan H, Ma L, Chen Z, Gu H (2009) Transcriptional profiling of Arabidopsis
seedlings in response to heavy metal lead (Pb). Environ Exp Bot 67:377–386
Liu X, Peng K, Wang A, Lian C, Shen Z (2010) Cadmium accumulation and distribution in
populations of Phytolacca americana L. and the role of transpiration. Chemosphere 78:
1136–1141
Ma LQ, Komar KM, Tu C (2001) A fern that accumulates arsenic. Nature 409:579