Page 125 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 125
Nanoclay and polymer-based nanocomposites: Materials for energy efficiency 101
[72] Ambikadevi VR, Lalithambika M. Effect of organic acids on ferric iron removal from
iron-stained kaolinite. Appl Clay Sci 2000;16:133–45.
[73] Herna ´ndez RAH, Garcı ´a FL, LEH C, Lu evanos AM. In: Iron removal from a kaolinitic
clay by leaching to obtain high whiteness index. IOP conference series: materials science
and engineering [Internet]45, 2013. p. 12002. Available from: http://stacks.iop.org/1757-
899X/45/i¼1/a¼012002?key¼crossref.c345f7fa4602651de3ccdb932de8ee03.
[74] Ambikadevi VR, Lalithambika M. Effect of organic acids on ferric iron removal from
iron-stained kaolinite. Appl Clay Sci 2000;16:133–45.
[75] Raji M, El M, Mekhzoum M, Qaiss A el K, Bouhfid R. Nanoclay modification and func-
tionalization for nanocomposites development: effect on the structural, morphological,
mechanical and rheological properties. In: Nanoclay reinforced polymer composites.
2016. p. 1–34.
[76] Soylemez S, Kanik FE, Tarkuc S, Udum YA, Toppare L. A sepiolite modified conducting
polymer based biosensor. Colloids Surf B: Biointerfaces [Internet] 2013;111:549–55.
Available from: http://www.ncbi.nlm.nih.gov/pubmed/23893029.
[77] Essabir H, Raji M, Bouhfid R, Qaiss A el K. Nanoclay and natural fibers based hybrid
composites: mechanical, morphological, thermal and rheological properties. Nanoclay
reinforced polymer composites 2016;29–49.
[78] Xi Y. Synthesis, characterization and application of organoclays. [PhD thesis], Queens-
land University of Technology; 2006;141.
[79] Singla P, Mehta R, Upadhyay SN. Clay modification by the use of organic cations. Green
Sustain Chem 2012;2:21–5.
[80] Zhang J, Zhang X, Wan Y, Mei D, Zhang B. Preparation and thermal energy properties of
paraffin/halloysite nanotube composite as form-stable phase change material. Sol Energy
2012;86:1142–8.
[81] Song S, Dong L, Zhang Y, Chen S, Li Q, Guo Y, et al. Lauric acid/intercalated kaolinite
as form-stable phase change material for thermal energy storage. Energy 2014;76:385–9.
[82] Karaipekli A, Sari A. Capric-myristic acid/vermiculite composite as form-stable phase
change material for thermal energy storage. Sol Energy 2009;83:323–32. https://doi.
org/10.1016/j.solener.2008.08.012.
[83] Li M, Wu Z, Kao H, Tan J. Experimental investigation of preparation and thermal
performances of paraffin/bentonite composite phase change material. Energy Convers
Manag 2011;52:3275–81.
[84] Sarı A. Thermal energy storage characteristics of bentonite-based composite PCMs with
enhanced thermal conductivity as novel thermal storage building materials. Energy
Convers Manag 2016;117:132–41.
[85] Lee LJ, Zeng C, Cao X, Han X, Shen J, Xu G. Polymer nanocomposite foams. Compos
Sci Technol 2005;65:2344–63.
[86] Widya T, Macosko C. Nanoclay modified rigid polyurethane foam. J Macromol Sci, Part
B: Phys 2005;44:897–908. https://doi.org/10.1080/00222340500364809.
[87] Taherishargh M, Sulong MA, Belova IV, Murch GE, Fiedler T. On the particle size effect
in expanded perlite aluminium syntactic foam. Mater Des 2015;66:294–303. https://doi.
org/10.1016/j.matdes.2014.10.073.
[88] Sivertsen K. Polymer foams. Polym Phys 2007;3063:1–2.
[89] Sauceau M, Fages J, Common A, Nikitine C, Rodier E. New challenges in polymer
foaming: a review of extrusion processes assisted by supercritical carbon dioxide. Prog
Polym Sci 2011;36:749–66.
[90] Khemani KC. Polymeric foams: an overview. Polym Foams 1997;669:1. https://doi.org/
10.1021/bk-1997-0669.ch001.