Page 124 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 124
100 Polymer-based Nanocomposites for Energy and Environmental Applications
[53] Sari A, Karaipekli A, Kaygusuz K. Capric acid and stearic acid mixture impregnated with
gypsum wallboard for low-temperature latent heat thermal energy storage. Int J Energy
Res 2008;32:154–60.
[54] Baetens R, Jelle BP, Gustavsen A. Phase change materials for building applications: a
state-of-the-art review. Energy Build 2010;42:1361–8.
[55] Zhang Z, Shi G, Wang S, Fang X, Liu X. Thermal energy storage cement mortar con-
taining n-octadecane/expanded graphite composite phase change material. Renew
Energy 2013;50:670–5.
[56] Medrano M, Cabeza LF, Castello C, Leppers R, Zubillaga O. Use of microencapsulated
PCM in concrete walls for energy savings. Energ Buildings 2007;39:113–9.
[57] Cabeza O, Castellon LF, Bogues C, Medrano M, Leppers M, Zubillage R. Use of
microencapsulated phase change materials in building applications. In: Buildings X.
39:ASHRAE; 2007. p. 113–9.
[58] Sa ´ AV, Azenha M, De Sousa H, Samagaio A. Thermal enhancement of plastering mor-
tars with phase change materials: experimental and numerical approach. Energy Build
2012;49:16–27.
[59] Guillaud H. Characterization of earthen materials. In: Avrami E, Guillaud H,
Hardy M, editors. Terra literature review—an overview of research in earthen archi-
tecture conservation. Los Angeles (United States): The Getty Conservation Institute;
2008. p. 21–31.
[60] Barreneche C, Navarro H, Serrano S, Cabeza LF, Ferna ´ndez AI. New database on phase
change materials for thermal energy storage in buildings to help PCM selection. Energy
Procedia 2014;57:2408–15. https://doi.org/10.1016/j.egypro.2014.10.249.
[61] Jawaid KRHM, Qaiss AeK, Bouhfid R. Nanoclay reinforced polymer composites [Inter-
net]. 2016. Available from: http://link.springer.com/10.1007/978-981-10-0950-1.
[62] Erukhimovich I, de la Cruz MO. Phase equilibria and charge fractionation in polydis-
perse polyelectrolyte solutions. 2097–112, Available from: http://arxiv.org/abs/cond-
mat/0406218.
[63] Bhattacharya SS, Aadhar M. Studies on preparation and analysis of organoclay nano par-
ticles. Res J Eng Sci 2014;3:10–6.
[64] Garcia-Quesada JC, Pelaez I, Akin O, Kocabas I. Processability of PVC plastisols con-
taining a polyhydroxybutyrate-polyhydroxyvalerate copolymer. J Vinyl Addit Technol
2012;18(1):9–16.
[65] Bordeepong S, Bhongsuwan D, Pungrassami T, Bhongsuwan T. Characterization of hal-
loysite from Thung Yai district, Nakhon Si Thammarat province, in Southern Thailand.
Songklanakarin J Sci Technol 2011;33:599–607.
[66] Abdullayev E, Lvov Y. Halloysite clay nanotubes as a ceramic “skeleton” for functional
biopolymer composites with sustained drug release. J Mater Chem B 2013;1:2894–903.
[67] Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, proper-
ties and uses of a new class of materials. Mater Sci Eng R Rep 2000;28:1–63.
[68] Bergaya F, Lagaly G. General introduction: clays, clay minerals, and clay science. 2nd
ed. Handbook of clay science, vol. 5. Elsevier Ltd.; 2013. pp. 1–19.
[69] Uddin F. Clays, nanoclays, and montmorillonite minerals. Metall Mater Trans A Phys
Metall Mater Sci 2008;39:2804–14.
[70] Prasad MS, Reid KJ, Murray HH. Kaolin: processing, properties and applications. Appl
Clay Sci 1991;6:87–119.
[71] Saikia N. Characterization, beneficiation and utilization of a kaolinite clay from Assam,
India. Appl Clay Sci 2003;24:93–103 Available from: http://linkinghub.elsevier.com/
retrieve/pii/S0169131703001510.