Page 126 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 126
102 Polymer-based Nanocomposites for Energy and Environmental Applications
[91] Kim JK, Pal K. Recent advances in the processing of wood–plastic composites. Springer
Science & Business Media; 2010.
[92] Andalib KMZ. Increasing void fraction of the polypropylene foams blown with chemical
blowing agents in high temperature extrusion. [Master’s thesis]. University of Toronto;
2015.
[93] Mohebbi A, Mighri F, Ajji A, Rodrigue D. Polymer ferroelectret based on polypropy-
lene foam: piezoelectric properties prediction using dynamic mechanical analysis.
Polym Adv Technol 2016;https://doi.org/10.1002/adv.21686.
[94] Livi S, Duchet-rumeau J. Processing of polymer composites. Adv Compos Bull
1990;1990:13.
[95] Fan C, Wan C, Gao F, Huang C, Xi Z, Xu Z, et al. Extrusion foaming of poly(ethylene
terephthalate) with carbon dioxide based on rheology analysis. J Cell Plast 2015;52:
277–98. https://doi.org/10.1177/0021955X14566085.
[96] Coccorullo I, Di Maio L, Montesano S, Incarnato L. Theoretical and experimental study
of foaming process with chain extended recycled PET. Express Polym Lett
2009;3:84–96.
[97] Baek BK, La YH, Lee AS, Han H, Kim SH, Hong SM, et al. Decrosslinking reaction
kinetics of silane-crosslinked polyethylene in sub- and supercritical fluids. Polym Degrad
Stab 2016;130:103–8. https://doi.org/10.1016/j.polymdegradstab.2016.05.025.
[98] Gosselin R, Rodrigue D. Cell morphology analysis of high density polymer foams.
Polym Test 2005;24:1027–35.
€
[99] Halil O, Erbayrak E. Experimental investigation on the self-healing efficiency of araldite
2011 adhesive reinforced with thermoplastic microparticles. In: Adhesives—
applications and properties. 2016. p. 11–23.
[100] Riggio C, Ciofani G, Raffa V, Bossi S, Micera S, Cuschieri A. Polymeric thin film tech-
nology for neural interfaces: review and perspectives. Polymer thin films 2010;289–308.
[101] Wang B, Huang HX. Effects of halloysite nanotubes addition and annealing on crystal
polymorphism of PVDF molded via microinjection-compression molding. Compos Sci
Technol 2015;118:163–70. https://doi.org/10.1016/j.compscitech.2015.08.020.
[102] Mittal V, Antunes M, Velasco JI. Polymer-carbon nanotube nanocomposite foams.
In: Polymer nanotube nanocomposites: synthesis, properties, and applications. 2nd ed.
2014. p. 279–332.
[103] Cao X, James Lee L, Widya T, Macosko C. Polyurethane/clay nanocomposites foams:
processing, structure and properties. Polymer 2005;46:775–83.
[104] Siripurapu S, Gay YJ, Royer JR, DeSimone JM, Spontak RJ, Khan SA. Generation of
microcellular foams of PVDF and its blends using supercritical carbon dioxide in a con-
tinuous process. Polymer 2002;43:5511–20.
Further reading
[1] Wu Y, Wang T. Hydrated salts/expanded graphite composite with high thermal conductiv-
ity as a shape-stabilized phase change material for thermal energy storage. Energy Convers
Manag 2015;101:164–71.
[2] Wei H, Xie X, Li X, Lin X. Preparation and characterization of capric-myristic-stearic acid
eutectic mixture/modified expanded vermiculite composite as a form-stable phase change
material. Appl Energy 2016;178:616–23.
[3] Mei D, Zhang B, Liu R, Zhang Y, Liu J. Preparation of capric acid/halloysite nanotube com-
posite as form-stable phase change material for thermal energy storage, Sol Energy Mater
Sol Cells 2011;95:2772–7. Available from: https://doi.org/10.1016/j.solmat.2011.05.024.