Page 227 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 227
Polymer-based nanocomposites for energy and environmental applications 199
[71] Naoi K, Simon P. New materials and new configurations for advanced electrochemical
capacitors. Electrochem Soc Interface 2008;17:34–7.
[72] Wallace GG, Spinks GM, Teasdale PR. Conductive electroactive polymers. Lancaster,
PA: Technomic Publishing Company Inc.; 1998.
[73] Br S, Garcia-Pastoria E, Marino W. The growth of polypyrrole films on electrodes.
J Electroanal Chem Interfacial Electrochem 1991;300:85–98.
[74] Wang J, Chen J, Konstantinov K, Zhao L, Ng SH, Wang GX, et al. Sulphur-polypyrrole
composite positive electrode materials for rechargeable lithium batteries. Electrochim
Acta 2006;51:4634–8.
[75] Wang GX, Yang L, Chen Y, Wang JZ, Bewlay S, Liu HK. An investigation of
polypyrrole-LiFePO 4 composite cathode materials for lithium-ion batteries. Electrochim
Acta 2005;50:4649–54.
[76] Pasquier AD, Orsini F, Gozdz AS, Tarascon JM. Electrochemical behaviour of LiMn 2 O 4 -
PPy composite cathodes in the 4-V region. J Power Sources 1999;81:607–11.
[77] Fedorkova A, Orinakova R, Cech O, Sedlarikova M. New composite cathode materials for
Li/S batteries: a review. Int J Electrochem Sci 2013;8:10308.
[78] Smela E. Microfabrication of PPy microactuators and other conjugated polymer devices.
J Micromech Microeng 1999;9:1–18.
[79] Perotti GF, Tronto J, Bizeto MA, Izumi CMS, Temperini MLA, Luga ˜o AB, et al. Biopoly-
mer-clay nanocomposites: cassava starch and synthetic clay cast films. J Braz Chem Soc
2014;25:320–30.
[80] Idris NH, Wang J, Chou S, Zhong C, Rahman MM, Liu H. Effects of polypyrrole on the
performance of nickel oxide anode materials for rechargeable lithium-ion batteries.
J Mater Res 2011;26:860–6.
[81] Sun MM, Zhang SC, Jiang T, Zhang L, Yu JH. Nano-wire networks of sulfur-polypyrrole
composite cathode materials for rechargeable lithium batteries. Electrochem Commun
2008;10:1819–22.
[82] Gangopadhyay R, De A. Polypyrrole-ferric oxide conducting nanocomposites: I. Synthe-
sis and characterization. EurPolym J 1999;35:1985–92.
[83] Suri K, Annapoorni S, Tandon RP, Mehra NC. The preparation of polypyrrole-Fe 3 O 4
nanocomposites by the use of common ion effect. Synth Met 2002;139:411–5.
[84] Xiaotun Y, Lingge X, Choon NS, Hardy CSO. Magnetic and electrical properties of
polypyrrole-coated γ-Fe 2 O 3 nanocomposite particles. Nanotechnology 2003;14:624–9.
[85] Chen A, Wang H, Zhao B, Li X. Nanocomposite of polypyrrole-iron oxide by simulta-
neous gelation and polymerization. Synth Met 2003;126:137–42.
[86] Gangopadhyay R, De A. Conducting polymer nanocomposites: a brief overview. Chem
Mater 2000;12:608–22.
[87] Yang C, Liu P, Zhao Y. Preparation and characterization of coaxial halloysite/polypyrrole
tubular nanocomposites for electrochemical energy storage. Electrochim Acta 2010;
55:6857–64.
[88] Kwon CW, Vadivel Murugan A, Campet G, Portier J, Kale BB, Vijayamohanan K, et al.
Poly(3,4-ethylenedioxythiophene)V 2 O 5 hybrids for lithium batteries. Electrochem
Commun 2002;4:384–7.
[89] Murugan AV, Kale BB, Kwon CW, Campet G, Mandale AB, Sainker SR, et al. A novel
approach to prepare poly(3,4-ethylenedioxythiophene) nanoribbons between V 2 O 5 layers
by microwave irradiation. J Phys Chem B 2004;108:10736–42.
[90] Murugan AV, Gopinath CS, Vijayamohanan K. Electrochemical studies of poly(3,4-
ethylenedioxythiophene) PEDOT/VS 2 nanocomposite as a cathode material for recharge-
able lithium batteries. Electrochem Commun 2005;7:213–8.