Page 224 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 224
196 Polymer-based Nanocomposites for Energy and Environmental Applications
[15] Niu C, Sichel EK, Hoch R, Moy D, Tennent H. High power electrochemical capacitors
based on carbon nanotube electrodes. Appl Phys Lett 1997;70:1480–2.
[16] Frackowiak E, Metenier K, Bartagna V, Beguin V. Supercapacitor electrodes from
multiwalled carbon nanotubes. Appl Phys Lett 2000;77:2421–3.
[17] An KH, Kim WS, Park YS, Choi YC, Lee SM, Chung D, et al. Supercapacitors using
single-walled carbon nanotube electrodes. Adv Mater 2001;13:497–500.
[18] Du C, Yeh J, Pan N. High power density supercapacitors using locally aligned carbon
nanotube electrodes. Nanotechnology 2005;16:350–3.
[19] Yoon S, Lee J, Hyeon T, Oh SM. Electric double-layer capacitor performance of a new
mesoporous carbon. J Electrochem Soc 2000;147:2507–12.
[20] Chimola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL. Anomalous increase in
carbon capacitance at pore sizes less than 1 nanometer. Science 2006;313:1760–3.
[21] Huanhuan W, Jianyi L, Shen ZX. Polyaniline (PANi) based electrode materials for energy
storage and conversion. J Sci Adv Mater Devices 2016;1:225–55.
[22] Conducting JJ, Nanomaterials P, Applications T. Conducting polymer nanomaterials and
their applications. In: Emissive materials nanomaterials. Advances in polymer science.
Heidelberg: Springer; 2006. p. 189–260.
[23] Hu CC, Chu CH. Electrochemical and textural characterization of iridium-doped poly-
aniline films for electrochemical capacitors. Mater Chem Phys 2000;65:329–38.
[24] Belanger D, Ren X, Davey J, Uribe F, Gottesfeld S. Characterization and long-term per-
formance of polyaniline-based electrochemical capacitors. J Electrochem Soc
2000;147:2923–9.
[25] Mallouki M, Tran-Van F, Sarrazin C, Simon P, Daffos B, De A, et al. Polypyrrole-Fe 2 O 3
nanohybrid materials for electrochemical storage. J Solid State Electrochem
2007;11:398–406.
[26] Tripathi SK, Kumar A, Hashmi SA. Electrochemical redox supercapacitors using PVdF-
HFP based gel electrolytes and polypyrrole as conducting polymer electrode. Solid State
Ion 2006;177:2979–85.
[27] Frackowiak E, Khomenko V, Jurewicz K, Lota K, Beguin F. Supercapacitors based on
conducting polymers/nanotubes composites. J Power Sources 2006;153:413–8.
[28] Lota K, Khomenko V, Frackowiak E. Capacitance properties of poly(3,
4-ethylenedioxythiophene)/carbon nanotubes composites. J Phys Chem Solid 2004;
65:295–301.
[29] Ryu KS, Lee YG, Hong YS, Park YJ, Wu XL, Kim KM, et al. Poly(ethylenedi-
oxythiophene) (PEDOT) as polymer electrode in redox supercapacitor. Electrochim Acta
2004;50:843–7.
[30] Villers D, Jobin D, Soucy C, Cossement D, Chahine R, Breau L, et al. The influence of
the range of electroactivity and capacitance of conducting polymers on the performance
of carbon conducting polymer hybrid supercapacitor. J Electrochem Soc 2003;150:
A747–52.
[31] Gnanakan SRP, Rajasekhar M, Subramania A. Synthesis of polythiophene nanoparticles
by surfactant-assisted dilute polymerization method for high performance redox super-
capacitors. Int J Electrochem Sci 2009;4:1289–301.
[32] Theerthagiri J, Sudha R, Premnath K, Arunachalam P, Madhavan J, Al-Mayouf AM.
Growth of iron diselenide nanorods on graphene oxide nanosheets as advanced elec-
trocatalyst for hydrogen evolution reaction. Int J Hydrogen Energy 2017;42:13020–30.
[33] Theerthagiri J, Thiagarajan K, Senthilkumar B, Khan Z, Senthil RA, Arunachalam P, et al.
Synthesis of hierarchical cobalt phosphate nanoflakes and their enhanced electrochemical
performances for supercapacitor applications. ChemistrySelect 2017;2:201–10.