Page 506 - Practical Design Ships and Floating Structures
P. 506

48 1


      Michell, J. H.(1898), The Wave Resistance of a Ship, Phil. Mug., London, England,vol. 45, pp.  106-
            123.
      Newman,  J. N.  (1976), Linearized  Wave  Resistance  Theory,  Proc. Znt.  Sem.  on  Wave Resistance,
                                                        -
           pp.3 1-43. SOC. Nav. Arch. of Japan, Tokyo.
      Newman,  J.  N.  (1987), Evaluation  of  the  Wave-Resistance  Green  Function:  Part  1-The   Double
           Integral. J. Ship Res. 3 1 : 2, June, pp. 79-90.
      Tuck, E. 0. (1966), Shallow Water Flows Past Slender Bodies. J. FZuidMech. 26, pp. 89-95.
      Wehausen, J. V.  and Laitone, E.V.(1960), Surface Waves in Handbuch der Physik,  Springer-Verlag,
           Berlin, Vol. 9,  446-778.
      Wigley,  W.C.S.(1942),  Calculated  and  Measured  Wave  Resistance  on a Series of  Forms  Defined
           Algebraically. Trans. RINA, Vol. 84,52.


                 TABLE1 : COMPARISON BETWEEN TWO METHODS FOR CALCULATING LOCAL
                              DISTURBANCE OF GREEN’S  FUNCTION
                           (F,,=0.319,  y=O,  z=O,  &O,v=O,<=-O.l)

      Method           x =o        x=o.1       x=0.3       x=0.7       x=0.9
      Rayleigh’s Viscosity  18.39429635  7.927961571   2.14054444   -0.610965748  -1.21626098
      Cauchy’s Theorem   29.72203588   19.25516810   13.46755223   10.71625231   10.111 12379
      Difference      -1 1.32773953  -1 1.32720653  -1 1.32700779  -1 1.32721885  -1 1.3273847

                TABLE 2: CONVERGENCE STUDIES OF Cw FOR A WIGLEY UULL  ( HI L = 0.1)









                                               0 035
                                               0 03
                                               0.025
                                               0 02
                                              8
                                               0.01s       I  \
                                                         r\l  “L
                                               0 01
                                               0 ws
         I  .   ,  ,   ,  .   .
   501   502   503   504   505   506   507   508   509   510   511