Page 119 - Pressure Swing Adsorption
P. 119
,I,_
94 PRESSURE SWING ADSORPTION'
CHAPTER
References
4
I. G. F. Fernandez and C. N. Kenney, Chem. Eng. Sd. 38,834 (1983).
2. C. W. Sk:irstrom. U.S. Patent No. 2.944.627 (Julv 12. 1960). to Exxon Research and
Eng1necnng.
Equilibrium Theory of
1 P. G. de Montgareuil and D. Domine, U.S. Patent No. 3,155,468 (1964), to Air Liquide.
4. C W. Skarstrom, Recn,r De1.•dopmt•llf,~ 111 Separatwn Science, Vol. 2, p. 95, N. N. Li, ed.,
CRC Press. Cleveland, Ohio, 1_975. Pressure Swing i\dsorption
5. M. J. Matz and K. S. Knaebel, A/Cit£ 1. 34(9). 1486 (1988).
6. C. W. Skarstrnm. U.S. Patent No. 3,237J77 (1966), to Exxon Research and Engmeenng.
7. S. Farooq, D. M. Rulhvcn, and H. A. Boniface, Chem. En,:. Sci. 44(12), W09 (1989).
8. N. H. Berlin, U.S. Patent No. 3,280,536 (Oct. 25, 1966), to Exxon Research and Engrneer-
mg.
9. H. Lee and D. E. Stahl. A/Ch£ Symp. Ser. 64(134), I (1973).
10. W. D. Marsh. R. C. Hoke, F. S. Prumuk, and C. W. Skar:mom, U.S. Patent No. 3,142,547
0964), to Exxon Research and Engmeenng.
11. J.C. Dav,s. Clten1. Er1g. Oc1. 16 (1972), p. 88.
12. L. B. Batta, U.S. Patent No. 3.564.816 (1971). 10 Union Carbide Corporntcon.
D. R. T. Cassidy. 111 A.C.S. Sl'lnp. Sn. IJS. Adsorp11on :ind 1011 Exchan~c wilh Synthcuc
Ze<llites, W. 1-1. Flank. ed .• Amcncan Chemical Society, Washington, D.C., J9HO, p. 275. 4.1 Background
14. J. L. Wagner. U.S. Patent No. 3.430,418 (1969), to Union Carbide Corporntmn.
Since the introduction of PSA, a wide vanetv of mathemat,cai models have
15. S.-S. Suh and P. C. Wankat, A/ChE J. 35(3), 523 (1989).
been suggested, based on theories that extend from. sun pie to complex. One
16. T. Tamura. U.S. Patent No. 3,797,201 (1974). lo T. Tamura, Tokyo, Japan. 1
of the first was a detailed model, presented by Turnock and Kadlec, which
17. R. T. Yang and S. J. Doong. A/ChE J. 31(11), 1829 (1985). accounts for nonlinear adsorption equilibnum, pressure drop, and rempera-
'!
18. P. L. Cen and R. T. Yang, Separatton Sci. Tech. 21{9), 845 (1986). ! iure effects. That type of model 1s covered m the next chapter. Shortly
thereafter, Shendalman and Mitchell' suggested 'a s1moler type of PSA
19. H.-S. Shin and K. S. Knaebel, AlC!iE J. 34(9), 1409 0988).
model, based on the assumption of local eouilibnum. This type of modei
20, A. K.ipoor and R. T. Yung, Chl'm. £11,:. Sci. 44(8), 1723 (1989).
accounts mainly for mass conservation, and ignores transport phenomena.
21. K. Knoblauch, Chem. Eng. 85(25), 87 (1978). That might make the model seem tnvial, but the basic equations of mass
22. D. M. Ruthven, N. S. Raghavan, and M, M. Hassan, Chem. Eng. Sc,. 41, 1325 (1986). conservation account for time and axial pos1t1on vanations of flow, pressure,
and comoosition, which are essential m pressure swing adsorbers.
23. 0. W. Haas, A. Kapoor, and R. T. Yang. A!ChE J. 34(10; 1913 (1988).
The modei of Shendalman and Mitchell was ba·sed on a four•step PSA
24. S. Farooq and D. M. Ruthven, Chem. Em!. Sci. 46(9). 2213 (1991)_
cycle m which a trace contammant was adsorbed from a nonadsorbing
25. S. Fnrooq and D. M. Ruthven, C/u>m. J::ni.:. Sci. 47(8). 2091 {1992). earner. Thus, it applies only rn very rcstnct1vc cases, such as cleanup of
hydrogen or helium con taming less than 1 %, of methane or nitrogen using
activated carbon as the adsorbent. Over the oast decade, there have been
several extensions of the basic ideas proposed bv Shendalman and Mitchell;
many of these developments are explamed m this chapter. For example, the
model has now been extended to binary mixtures havmg arbnrary compos1-
tions, with both components adsorbing, and m cycles composed of diverse
steps. The models are not perfect, but realistic PSA applications can be
studied relatively easily.
95