Page 14 - Pressure Swing Adsorption
P. 14

xii
 LIST OF SYMBOLS   CONTENTS                                                xm
 c,   volumetnc  heat capacity of soi id  (pC ,..)
              p"       high  pressure (at  end of pressunzat10n)
 CJISlcd   heat caoaclty of steel wall  (mass basts) (Table 5. IO)
 a   mternal diameter of adsorbent coiurnn   J\   feed  pressure
 D   diffus1v1ty   PL   low  pressure (during purge step}
 D,   microoore or mtracrystalline diffusivity   pelf   high  pressure  for  compressor
 D.   effective diffusivity   P,L   low  pressure  for  comoressor
 DK   Knudsen  diffusivity   Pe   Peclet  number (u HL/DL)
                                     0
 DL   axial dispersion coefticient   IP   ahsolutc pressure ratio  P 11 /  Pi,
 Dm   molecular diffus1v1ty   IP'   pressure  ratio  PH/PF
 D,   oore ditfus1v1ty   IP  F   pressure ratio  PF/ P1.
 E   diffusmnaJ  activation energy   IP H   pressure  ratm  PH/PL (end of oressunzation versus end of
 EA   ennchment of heavy component (y /y AF)   blowdown)
 '                     absolute  compress1on  ratio  PcHI PcL
 Ji, J   isotherm function  for component  i  at composition
 !/   isotherm slope (da* /de) at composition   1   adsorbed  phase concentratmn
 F   total  feed volume   1   eauilibrium vaiue of a
 F.~   free  energy of adsorbed  phase (Eo.  2.11)   vaiue of a at  equilibnum with  feed  (concentration  c)
 FA,  FB               value of a averageG over an adsorbent oart1cle
 fractions of comoonents  A, B  desorbed  from  column during   saturation limtt
 depressunzat10n
                       molar gas flow rate
 purge.to-feed velocity  ratio
                       radial  coordinate  m  rn1crooart1cle
 Gibbs free  energy of adsorbed  Phase (Eq, 2.8)   m1croparticle radius
 overall  heat  transfer coefficient   inner and outer radii of column
 enthalpy change on adsorption
 flux  of sorbate      radial  coordinaie  m  a  m1crooart1cle;  gas  constant  (RR);  product
                       recovery
 overall  mass  transfer (LDF) rate coefficient based on   macrooarticie  radius
 adsorbed  Phase concentrat10n
 K                     equilibnum seiect1v1ty  KA/K 8
 actsorotion equilibrium constant or isotherm slooe; constant in   kinetic selectivity  DA/D
 Ea.  7.5                                  8
 Kc   adsorption  equilibrium  constant  on  crystal (micropartJCie) volume   Sherwood number 2Rpkr/Dm
 K'           ,.       time
 adsorvt10n eauilibnum constant or isotherm slope based on   adsorption or desorot1on  time
 sorbate pressure
                       temperature
 pre-exponent1al  factors (Eq. 2.2)
                       feed  temoerature
 effective thermat conduct1v1ty of steel wall  (Table 5.10)   internal energy change or adsorption
 adsorbent bed length
                       tnterstitial  gas velocity
 _Phenomenological  coefficients
                       Interstitial gas velocity  at mlet
 moJecuiar weight; constant in  auadratic isostherm expression
 fl                    dimens1onless  mterstttal gas velocity  u/v H
 exponent  111  Freundlich 1sothenn exoress10n           0
 n.,   motes of actsorbable component (Eq,  2.8)   volume
 n,.   moJes  of solid  adsorbent (Eo.  2.8)   velocity of concentration front
 N                     velocity  of temperature front
 flux  relative  to  fixed  frame  of  reference  (Eo.  2.26);  total  moles   velocity of shock front
 (gaseous anct  adsorbed) in  bed  at  time t
 p   partial  pressure of sorbate   mole fraction  (of component  A) m adsorbed ohase; dimensionless
 P,   saturation vapor pressure   adsorbed  phase concentration averaged over a
 p                     macropart1cle  citliiis
 absolute pressure On  column)
 P'                    dimensionless adsorbed phase concentration averaged over  a
 rate of change of pressure durmg feed step (Eq. 4.35)
                       m1crooart1cle (q/q)
   9   10   11   12   13   14   15   16   17   18   19