Page 288 - Pressure Swing Adsorption
P. 288
I I j
264 PRESSURE SWING ADSORPTION
i CHAPTER
'
16. S. Sircar and J, W. Zondlo, U.S. Patent 4,013,429 (1977) to Air Products. I
17. S. Sircar. m Adsorp11on: Science and Technology, p. 285, NATO ASI E158 A. E. Rodrigues, 7
M. D. Le Van, and D. Tondeur, eds., Kluwer, Dordrecht (1989).
I
18. J. L. Wagner, U.S. Patent 3,430,418 to Umon Carbide (1969).
19. L. B. Balta, U.S. Patent 3,564,816 to Unton Carbide (1971). Extensions of the PSA Concept
20. R. W. Alexis, Chem. Eng. Prag. Symp. Ser. 63(74), 50 0968).
I
21. H. A. Stewart ani J. L. Heck, Chem. Eng. Prog. 65(9), 78 (1969).
22. K. J. Doshi, C.H. Kahro, and H. A. Stewart, AlChE Symp. Ser. 67017) (1971).
23. T. Tomita, T. ·sakamoto, U. Ohkamo, and M. Suzuki, in Fundamentals of Adsorpt,on II,
p. 89, A. I. Liapis, ed., Eng. Foundation, NY (I 987).
24. J, L. Heck and T. Johansen, Hvdmcarbon Processmg, p. 175 Oan. 1978).
25. A. Fuderer and E. Rudelstorfer, U.S. Patent 3,846,849 to Union Carbide (1976).
26. R. T. Cassidy, "Polybed Pressure Swmg Hvdrogen Processes," in Adsorption and Jon
Exchange with Svnthettc Zeoli/es, W, H. Flanck, ed., ACS Symp. Ser. 13S, p. 247, Am. Chem.
Soc., Waf>hington D.C. (1980).
27. R. T. Cassidy and E. S. Ho1nies, AIChE Symp. Ser. 80(233), 68 (1984),
28. G. Keller, "Gas Adsorption Processes: State of the Art in Industrial Gas Separations," Am.
Chem. Soc. Symp. Ser. (223) (1983).
29. M. Suzuki, Adsorprwn Engineermg, p. 247, Kodansha Elsevier, Tokyo 0990).
30. 0. J. Smith and A. W. Westerberg, Chem. Eng. Sci. 46, 2961 (1991). The basic pressure and vacuum swing processes have been developed in a
vanety of ways by making use of ingenious multiole~bed cycles to conserve
31. J. Izumi. Mitsubishi Heavy tndustnes Ltd., personai commumcat1on (1992).
energy anct separative work. The processes described in Chapter 6 give some
32. J. Grebbell, Oil and Gas Journal, p. 85, April 14 (1985).
mdicat10n of the range of such solutions. In all these 'Processes the reiat1on~
33. W. C. Kratz, D. L, Rarig, and J. M. Pietrantonm, A!ChE Symp. Ser. 84(264) (1988). shio with the onginal PSA concept ts ciuue clear. However, the PSA concept
34. R. Kumar, W. c. Kratz, D. E. Guro. D. L. Rarig, and W. P. Schmidt, "Gas Mixture has also been developed m other ways, leading to processes -m which the
Fractionation to Produce Two High Puritv Products by PSA," Sep. Sci. and Technoi. 27, relationship to the parent process 1s less obvwus. Three such develooments,
509 (1992). none of which has so far been developed on an mdustnal scale, are described
35. S. K. Sood, C. Fong, K. M. Kaivanam, A. Bus1gm, 0. V. Kveton, and in this chapter.
D. M. Ruthven, Fu.non Technology 24,299 (1992).
36. D. M. Ruthven and S. Farooq, Chem. Eng. Sci. On press).
7.1 The Pressure Swing Parametric Pump
37. J. A. Ritter and R. T. Yang, J and E.C. Research 30, 1023 (1991).
38. E. S. Rikkinides and R. T. Yang, J and E.C. Research 30, 1981 (1991). The term parametric pumpmg was coined by Wilhelm in the l 960s to
describe a novel class of liquid-phase separation processes in which separa-
39. S. Sircar, Fourth International Conferences on Adsorption, Kyoto, Japan, May, 1992,
plenary lecture, "Novei Applications of Adsorption Technology." tion ts achieved in an oscillating flow system subjected to a periodic change m
1
temperature and other intensive thermodynamic variable. He and his co-
40. R. Banenee, K. G. Naravankhedkar, and S. P. Sukhatine, Chem. Eng. Sci. 45,467 (1990).
workers focused on temperature swmgs, but they contemplated also the
41. R. Baner_,ee, K. G. Naravankhedkar, and S. P. Sukhatine, Chem. Eng. Sci. 47, 1307 (1992).
synchronous cycJe of pressure, pH, and electrical and magnetic fields. In fact,
he cited the earliest patent of Skarstrom (PSA aJr dryer) as an example of a
pressure parametnc pump.
The essential features of a thermally driven system are shown m Figure
7.1. During the heating half-cycle liquid flows upwards, while the flow 1s
reversed ctunng the cooling half-cycle. The basts of the separation can be