Page 343 - Pressure Swing Adsorption
P. 343

ii  I
                320
                                                      PRESSURE SWING ADSORPTION
                                                                                              APPENDIX B
                                                                                                                                                          321
                conditions (Eqs. 4,  13,  and  14):
                                                                                              obtamect:
                      dXcA          1      [        (a'xcA    2  axCA  \                      d        M+I
                                                              '1
                      ""7f:r ~ 1-xcA -xca  (! -xca)  ~ a:;, J             (B.27)              J; (j) ~  I:  (QmBx(J,i) - Wi'(j)Ax(j,i)]yA(i)            (8.33)
                                                           +
                                                                                                       ,=2
                                                                                                       -A,[Qm Bx(J, 1)  - W1°(i)Ax(  ,  I)]
                                                                                                                                 1
                                                                                                         M+ J
                                                                                                       X  I; I A, Ax( M  +  2, i)  - Ax( I, i)] y A(i)

                                                                                                       +A 1[QmBx(J,M +  2)  - Wii(j)Ax(J,M +  2)]
                                                                                                         M+I
                                                                         (B.28)
                                                                                                       X  L  [A,Ax(M+ 2,i)  - Ax(l,i)]yA(i)
                                                                                      ,j                 •=2                          M+>

                                                                                                       -A,[QmBx(1, I)  - Wf(j)Ax(J, I)]  I:  Ax(M + 2,i)yA(i)
                                                                                      i
                                                                                      !                +A,[Qm Bx(j, 1)  - W1•(i)Ax(1, !)]Pe r(l)yAlz-n·
                                                                                      '                -A 1[Qm Bx(J, M  +  2)  - Wf(i)Ax(J, M+ 2)]Pe f(!)y)z.n-
                                                                                      i
                                   OXco I  ~ 0                                        j
                                    aTJ   'I) =o                         (B.29)       l               + ,t,f{[yA(j)  - ll[yA(j)  -yAPl,-1U)J
                                                                                      i                +yA(j}[I  - YA(j)  - Yoel,.,(j)]},
                                                                         (B.30)
                                                                                      j                   1~2, ... , M  +  l
                                 I"'                                                         YA,-1,.,(j)and  Y,wl,.,U)areot,tained from  Ea.  B.41.  y,,(l)and  yA(M+  2)
                             - 'YKYs XcA(l  - YA  - Ya,1,-i)
                                                                                             are  given  by  Eas.  B.13  and  8.14,  respectively.
                   OXca I      f'
                                y
                   ~1)     ~ -y (1  - Xc8 )(1  - YA  - YaPl,-1)          (B.31)                 B.4.1  Pressurization
                        11=1   K  S
                                                                                      '
                             -f'xca\YA -yA,l,-1)                                             The following set of linear  algebraic eauat1ons  is  obtained  when  the  dimen-
                                                                                     · 1     SJOnless overall material. balance eauat,ons (Ea. B.22) and the velocity bound-
               The eauilibnum isotherms (Ea. 7 in Table 5.6) assume the  followmg  dimen-  '   ary condition (Ea. B.26) are combined and wntten  m the collocat1on  form:
               sionless form:
                                                                                                  M+I
                                                                                                   L  AH(J,i)ii(i) ~ - ";{ ([Y,1U)  -yA,,/,.,U)I       (8.34)
                                                                                                  !=2
                                                                         (B.32)
                               }       XCB                                                                          + 11  - YAU)  - Ynrl,-1U)]),
                    Yori,-,~ /3  ·y  1 -x   -x
                              A  E     CA    CB                                                                        1~2, ... , M  +  i
                                                                                             The tnal functmn chosen to satisfy the zero exist velocity boundary condition
                                                                                             is:
                B.4  Collocation  Form  of  the  Dimensionless  Pore  Diffusion
                                                                                                               M            M+l
                    Model Equations                                                                 v = (1  - z) I; a,P,_i(z) ~  I; t,z'·'             ( 8.35)
                                                                                                              I= I
               When  Ea.  B.23 with the boundary conditions given  by  Ea.  B.24 1s  written  in   Vl,-o ~ v(l) ~ §,                                   (B.36)
                the  collocat1on  form,  the  followmg  set of ordinary  differential  equations  1s
                                                                                             Solution  of  Eo.  B.34  gives  velocities  along  the  column  at  the  internal
   338   339   340   341   342   343   344   345   346   347   348