Page 339 - Pressure Swing Adsorption
P. 339

PRESSURE SWING ADSORPTION                  APPENDIX B                                                   317
             316

             Eouatlon  B.4 now  becomes:
                                                                       (B.l I)


                  clx 8   .   [      /3n[l  - YA(i)]           • ]
                   dT  (J)  = aB  I+ f3AyA(j)  +  !3.[,  - yA(i)]  - Xe(/)  '

                               1  = 2, ... ,M + 1                                                           1:;,  ~1~·
              The  following  set of linear algebraic equations is  obtained when  the dimen-
              sionless overall material  balance  eauatlon  (Ea.  B.7) and  the velocity  bound-
                                                                                                                  ~
                                                                                                                0
              ary conditions (Eq. B.8) are combined and wntten m collocatmn form:                               .Q   0
                                                                                                                "  •
                                                                                                             0    "'  .5
                   M~• (A (.  ")  _ Ax(M + 2,i)Ax(J,M+ 2))-(")          (B.12)                               ,.   "  "'
                    ;_,   XJ,l       Ax(M+2M  2\          VI                                                '   0  •  '5
                    •=2  -                  '   •   +  ;                                                        :;:
                                          j3AyA(i)               ·  )
                                (
                       =  -,fr  [  aA  1 + j3AyA(i)  + J3.[1  - YA(i)]  - xA(i)                                 "- .
                                                                                                           %!~
                                                                                                                I  "I  ';,          0      0
                                      13,.[1  - y,,(i)]       (  )]                                        -l<c   "- C  0.
                        + Ys<r 11  -,---'--=~-'-''"[r'-''---~-)~] - x n  j)
                              (
                                 + /JAy,,(j)  + /311  ] - y,,(j
                                                                                                            ·-  N                   N
                        -[Ax(_  )  _  Ax(J, M  + 2)Ax(M -r  2, 1) )-< ) _ l_  ap
                                                               I
                              J,l       Ax(M+ 2,M+ 2)        v      Par·
                                                                                                                  ~ t'
                           J =  2, ... , M + 1                                                                  '5   -.  ;;
                                                                                                             0   0   - O   0  0   .
              The  followmg ·eauat10ns,  which  are  denved  from  the  boundary  conditions,               .5   .Q  _g.:::  Q
                                                                                                                    ~
                                                                                                                ~
                                                                                                                N
               give the values  at  J =  l  and  M  +  2:                                                    ~   ·c   N  .s  ~  •
                                                                                                             n
                                                                                                                        E
                                                                                                            0     ~  1!'  E  ·o
                                   M+I                                                                          ~  Js   .a  e  .5
                        YA(!)=  -A, L  [A,Ax(M + 2,i) -Ax(l,i)]YA(i)     (B.13)                                 ~   0   -
                                    M+I
                                -A L  Ax(M+2,i)yA(i)  +A,Peii(l)YAlz-o-                                      "  e
                                   4                                                                        ~
                                     !-2
                                  M+i
                   YA(M+2)  =A,  L  (A,Ax(M+2,i)-Ax(l,i)]yA(i)           (B.14)
                                -A, Pe v(l)YAlz-o-
                    v(M + 2)  =     Ax(M + 2, 1)    (1)                  (B.15)
                                  Ax( M + 2, M + 2) v
                                                      \  I
                                   M+ I
                                -   ~  Ax(M+2,i)v(i))/Ax(M+2,M+2)
                                  (
                                   1 2
                Note:  Here J refers to the axiai  locatton m the bed and is  different from  tile
   334   335   336   337   338   339   340   341   342   343   344