Page 147 - Principles and Applications of NanoMEMS Physics
P. 147

3. NANOMEMS PHYSICS: Quantum Wave Phenomena                   135


                           d d d                           d d d
                            1 1 1                          1 1 1
                                                       d
                                           d d
                                     d
                            2 2 2  d d d 2 2  d d 1  d 2 2 2  d d d 1 1 1  d d 2 2 2  2 2 2
                                2
                                      1 1
                                                ε ε
                                                          ε
                            ε ε 1 1 1  ε ε ε 2 2 2  ε 1 1 1  ε ε ε 2 2 2  ε 1 1 1  ε ε ε 2 2 2  ε ε 1 1 1  . . .
                            ε
                                     ε ε
                                                              . . .
             Incoming Wave                                      Exiting Wave
             Incoming Wave
                                                                Exiting Wave
                              Figure 3-24 Sketch of one-dimensional PBC.
             Focusing on  a  unit  cell,  see Fig. 3-25,  we notice that if a wave impinges
             from the left on this unit cell, it will in general, undergo multiple reflections
             and trasmissions at two places, namely, t, r at the first  ε /ε , discontinuity,
                                                             1  2
             and r’, t’ at the ε /ε  discontinuity.
                               1
                           2
                                            d d d 1 1 1  d d d 1 1 1
                                                d d d 2 2
                                            2 2 2  2  2 2 2
                   ik ik ik  z z z                                t t t  e e  ik 1 z z
                                                                         ik 1
                 e e e  1 1 1               ε 1 ε 1 ε 1  ε 2 ε 2 ε 2  ε 1 ε 1 ε 1  To
                                                                   Total ltal
                                                                   Tota
                      ik z z
               r r Totatal  e e  − − ik 1 1  Un it  C e
               r Total lTo
                                             Un it  C e ll ll
                                             (a)
                        ε ε ε  1 1 1  ε ε ε  2 2 2  ε ε ε  1 1 1
                                                        z z
                               0 0      d d
                                                          tt   ik ik 2 2  d d
                                                          tt e ' e '
                                                            + +           2 2 2
                                                              ik 2 d
                                                                      ik 2 d
                                                          tt e e' ' tt  ik 2  d  r r r ' e' e'  e  ik  2  d d
                                                                      ik 2
                                                            + +            4 4 4
                                                                       ik 2 d
                                                              ik 2 d
                                                          tt
                                                          tt e e' '  ik 2  d  r r r ' e' e'  e  ik  2  d d
                                                                       ik 2
                                    . .
                                                            + . . .
                                    . .                     + . . .
                                    . .                     = t
                                                            = t
                                                                To t a l l
                                                                To t a
                                            (b)
             Figure 3-25 (a) PBC  unit cell. (b) Transmission/reflection analysis.   k =  ω  µε  is the
                                                                i       i
             wave vector in region i.
             Then, the amplitude of the transmitted wave will be given by the sum of the
             following terms [58]:
                (1)  The fraction that is transmitted  through the  ε /ε  interface, is
                                                              1  2
                    phase-shifted while traversing (left-to-right) the region  ε  of length
                                                                     2
                    d, and then is transmitted through the  ε /ε  discontinuity, namely,
                                                       2  1
                          '
                    te ik 2 d  t . This is the amplitude for direct transmission through two
                    discontinuities.
   142   143   144   145   146   147   148   149   150   151   152