Page 242 - Principles and Applications of NanoMEMS Physics
P. 242

232                                                    Appendix B

                   G
               F  N ≡  f  ()cb +  N  ,...N  ,...N  ≡  f  ()Tb +  ˆ  N  ,...N − 1 ,...N     (B.20)
                η
                                     η
                             Nη
                                          M
                                 1
                                            0       η   1   η      M  0
                    ˆ
             where, T  is the so-called the phase-counting operator,
                    η
                        η −1
                     −1
               T ˆ η  ≡  ( ) =1η ¦  ˆ N η                                                                                      (B.21)
             which keeps  track of the number of signs picked  up when acting with  a
                                           G                              G
             fermion operator  c   on a state  N   to produce a different state  N ' ,
                             k η
                                             0                              0
             i.e.,
                                           1 N
                                                          N η
                                        C
                                                       C
                            C
             c kη () ( ) .......CC 1  1 N  η  N η  ( ) N M  0 = T ˆ η () ( ) N η− 1 c kη ( ) ( ) N M  0 .    (B.22)
                                                            ...C
                                            ...C
                                                        η
                                               η−
                              M
                                         1
                                                 1
                                                               M
                 c) The Klein factors obey commutation relations,
                  +
               {F η  , F  ' η } 2δ=  ηη '  for  all η ,η ' ,                                                    (B.23)
                   +     +
               F η F  ' η  = F η  F η  =  1,                                                                           (B.24)
                        =
                  +   +
               {F η  , F η  } {F η  , F η } 0=  ,  for η ≠  ' η ,                                          (B.25)
                               +
                                    ˆ
                ˆ
               [N ,  F η' + ] δ=  ηη' F ,  [N ,  F η' ] −=  δ ηη' F .                                     (B.26)
                                     η
                                                   η
                 η
                              η
             B.3 Bosonic Field Operators
                                                                        φ
               In  analogy with fermion field operators, boson fields operators,  () x ,
                                                                         η
             are defined in terms of bosonic operators as follows:
               ϕ () −≡x  ¦  1  e −iqx b qη e −aq  2 /  , and  () −≡xϕ +  ¦  1  e iqx b + qη e − / 2  ,  (B.27)
                                                                  aq
                                               η
                η
                       q >0 n q                       q >0 n q
             with
               φ η () ≡x  ϕ η ()+x  ϕ η () −=x  ¦  1  (e −iqx b qη  + e iqx b qη )e −aq  2 /  ,       (B.28)
                               +
                                                            +
                                       q >0 n q
   237   238   239   240   241   242   243   244   245   246   247