Page 60 - Principles and Applications of NanoMEMS Physics
P. 60

2. NANOMEMS PHYSICS: Quantum Wave-Particle Phenomena           47

               <  n m >= δ  ,                                                                                        (16)
                         nm

                 φ
                               φ
               < ψ   >=  ¦  n ∈Z  < n  >< nψ >= ¦ n ∈Z φ * ( n)ψ ( n) ,                           (17)
             where n belongs to the set of non-negative integers Z.
               These  relationships  permit obtaining the fundamental  quantum
             mechanical  properties  of the TL, namely, the eigenfunctions of the
             “momentum” operator  p ˆ ,  i.e.,  the nature of  the current, and  the energy
             spectrum.
               Assuming    the   usual   relations  [53],  p ˆ  p  >= p  p  >  and
             f  p) ˆ (  p  >= f (  p)  p  > , Li [62] expands the momentum states in terms of the

             number states,  p  >=  ¦  n ∈Z  c (  p)  n  > together with the shifting operation
                                      n
             ~         p =
                        / ˆ
             Q  p  >=e  iq e  p  > ,  to      obtain      the       relationship
             c    c  =  exp (iq  p =  + iα  ).  This,  in turn, yields the momentum
              n + 1  n      e        n + 1
             expansion in terms of the number states as,


              p  >=  ¦  n ∈Z κ n e  inq e p =/  n  >                                                                        (18)


                          n                 n
                         i ¦ α j          −i ¦ α − j
             where  κ  = e  j  =1   and  κ  = e  = j 1   for  n>0. Making the  substitution
                     n               −n
             p →  p =  ( π  q e  ) in the exponential of (18) yields the same state  p  > ,
                    +
                       2
             from  where it is  determined that the  momentum  operator  p ˆ  is periodic.
             Further progress towards obtaining the eigenstates and dispersion is attained
             by noticing that, if one defines new discrete derivative operators by:
                                 −
                         ψ (n +1 ) ψ ( ) n
               ∇  ψ () n =              ,                                                                 (19)
                 q e
                               q e
                         ψ () n −ψ (n 1−  )
               ∇ ψ  () n =             ,                                                                 (20)
                               q e
                 q e

              then Schrödinger’s equation (8), may be expressed as:
               −  = 2  ­ { ∇  − ∇  }+  ­ q ˆ 2  + q ˆ  ½ ½ ¾ ¾  ψ =  εψ ,                                    (21)
                                          V
                      ®
                                    ®
                 2 q 2 L   e q  e q  ¯ 2 C    ¿ ¿
                    e  ¯
   55   56   57   58   59   60   61   62   63   64   65