Page 213 - Probability Demystified
P. 213

202                                         CHAPTER 11 Game Theory

                                        Let p be the probability that Player A plays the ace and 1   p be the
                                        probability that Player A plays the three. Then

                                          3p   5ð1   pÞ¼ 5p þ 7ð1   pÞ
                                           3p   5 þ 5p ¼ 5p þ 7   7p
                                                8p   5 ¼ 12p þ 7
                                          8p þ 12p   5 ¼ 12p þ 12p þ 7
                                           20p   5 þ 5 ¼ 7 þ 5
                                                   20p ¼ 12
                                                         12   3
                                                     p ¼    ¼
                                                         20   5
                                                                       3
                                        The value of the game when p ¼ is
                                                                       5

                                                            3          3
                                          3p   5ð1   pÞ¼ 3       51
                                                            5          5

                                                            3       2
                                                       ¼ 3       5
                                                            5       5
                                                           1
                                                       ¼  or   $0:20
                                                           5
                                        Player A will lose on average $0.20 per game. Thus, the game is not
                                        fair.
                                        Let s be the probability that Player B plays the two and 1   s be the
                                        probability that Player B plays the four; then
                                          3s   5ð1   sÞ¼ 5s þ 7ð1   sÞ
                                            3s   5 þ 5s ¼ 5s þ 7   7s
                                                8s   5 ¼ 12s þ 7
                                           8s þ 12s   5 ¼ 12s þ 12s þ 7
                                               20s   5 ¼ 7
                                           20s   5 þ 5 ¼ 7 þ 5
                                                   20s ¼ 12
                                                   20s   12
                                                       ¼
                                                   20    20
                                                         12   3
                                                     s ¼    ¼
                                                         20   5
                                        Player B should play the two, 3 times out of 5.
   208   209   210   211   212   213   214   215   216   217   218