Page 20 - Probability and Statistical Inference
P. 20

Contents xv

                                    4.5.1 The Student’s t Distribution                  207
                                    4.5.2 The F Distribution                            209
                                    4.5.3 The Beta Distribution                         211
                               4.6  Special Continuous Multivariate Distributions       212
                                    4.6.1 The Normal Distribution                       212
                                    4.6.2 The t Distribution                            218
                                    4.6.3 The F Distribution                            219
                               4.7  Importance of Independence in Sampling Distributions  220
                                    4.7.1 Reproductivity of Normal Distributions        220
                                    4.7.2 Reproductivity of Chi-square Distributions    221
                                    4.7.3 The Student’s t Distribution                  223
                                    4.7.4 The F Distribution                            223
                               4.8  Selected Review in Matrices and Vectors             224
                               4.9  Exercises and Complements                           227
                           5   Concepts of Stochastic Convergence                       241
                               5.1  Introduction                                        241
                               5.2  Convergence in Probability                          242
                               5.3  Convergence in Distribution                         253
                                    5.3.1 Combination of the Modes of Convergence       256
                                    5.3.2 The Central Limit Theorems                    257
                               5.4  Convergence of Chi-square, t, and F Distributions   264
                                    5.4.1 The Chi-square Distribution                   264
                                    5.4.2 The Student’s t Distribution                  264
                                    5.4.3 The F Distribution                            265
                                    5.4.4 Convergence of the PDF and Percentage Points  265
                               5.5  Exercises and Complements                           270
                           6   Sufficiency, Completeness, and Ancillarity               281
                               6.1  Introduction                                        281
                               6.2  Sufficiency                                         282
                                    6.2.1 The Conditional Distribution Approach         284
                                    6.2.2 The Neyman Factorization Theorem              288
                               6.3  Minimal Sufficiency                                 294
                                    6.3.1 The Lehmann-Scheffé Approach                  295
                               6.4  Information                                         300
                                    6.4.1 One-parameter Situation                       301
                                    6.4.2 Multi-parameter Situation                     304
                               6.5  Ancillarity                                         309
                                    6.5.1  The Location, Scale, and Location-Scale Families  314
                                    6.5.2 Its Role in the Recovery of Information       316
                               6.6  Completeness                                        318
                                    6.6.1 Complete Sufficient Statistics                320
                                    6.6.2 Basu’s Theorem                                324
                               6.7  Exercises and Complements                           327
   15   16   17   18   19   20   21   22   23   24   25