Page 21 - Probability and Statistical Inference
P. 21

xvi Contents

                                 7   Point Estimation                                         341
                                     7.1   Introduction                                       341
                                     7.2   Finding Estimators                                 342
                                           7.2.1 The Method of Moments                        342
                                           7.2.2 The Method of Maximum Likelihood             344
                                     7.3   Criteria to Compare Estimators                     351
                                           7.3.1  Unbiasedness, Variance and Mean Squared Error  351
                                           7.3.2 Best Unbiased and Linear Unbiased Estimators  354
                                     7.4   Improved Unbiased Estimator via Sufficiency        358
                                           7.4.1 The Rao-Blackwell Theorem                    358
                                     7.5   Uniformly Minimum Variance Unbiased Estimator      365
                                           7.5.1 The Cramér-Rao Inequality and UMVUE          366
                                           7.5.2 The Lehmann-Scheffé Theorems and UMVUE       371
                                           7.5.3 A Generalization of the Cramér-Rao Inequality  374
                                           7.5.4 Evaluation of Conditional Expectations       375
                                     7.6   Unbiased Estimation Under Incompleteness           377
                                           7.6.1 Does the Rao-Blackwell Theorem Lead
                                                 to UMVUE?                                    377
                                     7.7   Consistent Estimators                              380
                                     7.8   Exercises and Complements                          382

                                 8   Tests of Hypotheses                                      395
                                     8.1   Introduction                                       395
                                     8.2   Error Probabilities and the Power Function         396
                                           8.2.1 The Concept of a Best Test                   399
                                     8.3   Simple Null Versus Simple Alternative Hypotheses   401
                                           8.3.1 Most Powerful Test via the Neyman-Pearson
                                                 Lemma                                        401
                                           8.3.2 Applications: No Parameters Are Involved     413
                                           8.3.3 Applications: Observations Are Non-IID       416
                                     8.4   One-Sided Composite Alternative Hypothesis         417
                                           8.4.1 UMP Test via the Neyman-Pearson Lemma        417
                                           8.4.2 Monotone Likelihood Ratio Property           420
                                           8.4.3 UMP Test via MLR Property                    422
                                     8.5   Simple Null Versus Two-Sided Alternative Hypotheses  425
                                           8.5.1 An Example Where UMP Test Does Not Exist     425
                                           8.5.2 An Example Where UMP Test Exists             426
                                           8.5.3 Unbiased and UMP Unbiased Tests              428
                                     8.6   Exercises and Complements                          429

                                 9   Confidence Interval Estimation                           441
                                     9.1   Introduction                                       441
                                     9.2   One-Sample Problems                                443
                                           9.2.1 Inversion of a Test Procedure                444
   16   17   18   19   20   21   22   23   24   25   26