Page 263 - Process Equipment and Plant Design Principles and Practices by Subhabrata Ray Gargi Das
P. 263

264    Chapter 10 Absorption and stripping




             10.3.2 Driving force line
             Line PM is termed as the driving force line since it identifies the bulk (x,y) and the corresponding
             interface concentrations (x i ,y i ) at a point P in the bed, and the difference (y   y Ai ) gives a measure of
             the driving force. The slope of the driving force line is a function of the relative diffusional resistance
             in the two phases.
                The equation for line PM is deduced as follows
                Molar flux of A at steady state in case of equimolar counterdiffusion:
                                                                                          (10.6)
                                       N A ¼ k y ðy AG e y Ai Þ¼ k x ðx Ai e x AL Þ
             and when A diffuses into nondiffusing B:
                                                       k 0
                                                        y
                                                                                         (10.7a)
                                                k y ¼
                                                    ð1   y A Þ iM
                                                       k 0
                                                        x
                                                k x ¼                                    (10.7b)
                                                    ð1   x A Þ iM
             Where
                                                  fð1   y Ai Þ ð1   y AG Þg
                                       ð1   y A Þ iM  ¼                                  (10.7c)
                                                  lnfð1   y Ai Þ=ð1   y AG Þg
             and


                                                 fð1   x AL Þ  ð1   x Ai Þg
                                       ð1   x A Þ iM  ¼                                  (10.7d)
                                                  lnfð1   x AL Þ=ð1   y Ai Þg
                Equating the flux of A in the two phases relates y AG and x AL as-

                                       N A ¼ k y 0  ðy AG e y Ai Þ  ¼ k 0 x  ðx Ai e x AL Þ  (10.8)
                                                     iM            iM
                                              ð1   y A Þ    ð1   x A Þ
                Eq. 10.8 relates the bulk and the interphase concentrations and is the equation of the driving force
             line passing through P (x AL ,y AG ) and M (x Ai ,y Ai ).
                Only a single component diffusing across the interphase is mostly considered in designing for
             absorption, as well as stripping columns, and in such a case, the slope of PM in case of only A diffusing
             in stagnant B is given by

                                                                        k
                                                        0                0
                                                        x
                                         ðy AG e y Ai Þ  k =ð1   x A Þ iM  x
                                   Slope ¼         ¼              ¼ f                    (10.8a)
                                                        0
                                                        y
                                          ðx AL e x Ai Þ  k =ð1   y A Þ iM  k y 0
             where,
                                                          iM
                                                   ð1   y A Þ
                                                f ¼                                      (10.8b)
                                                   ð1   x A Þ iM

                The slope of PM is (  k k ) in case of equimolar counterdiffusion.
                                       0
                                    0
                                       y
                                    x
   258   259   260   261   262   263   264   265   266   267   268