Page 256 - Process Modelling and Simulation With Finite Element Methods
P. 256

Geometric Continuation                243

         References

           1.  KJ  Ruschak.  ‘A  method  for  incorporating  free  boundaries  with  surface
             tension in finite element fluid-flow simulators” Znt. J. Num. Methods Eng.
              15:639, 1980.
          2.  RT  Goodwin  and  WR  Schowalter  ‘Arbitrarily oriented  capillary-viscous
             planar jets in the presence of gravity.” Phys. Fluids, 7(5): 954-963,  1995.
          3.  H.  Ockendon  and  J.R. Ockendon  Viscous  flow  Cambridge  : Cambridge
             University Press, 1995.
          4.  GM Homsy  et  al., Multimedia  Fluid  Mechanics  (CD-ROM),  Cambridge:
             Cambridge University Press, ISBN 0-521-78748-3,2000.
          5.  DS  Dugdale,  “Viscous  flow  through  a  sharp-edged  orifice,”  Znt.  J.
             Engineering Science 8:725-729,  1997.
          6.  WN Bond, Proc. Roy. SOC., 34:139, 1922.
          7.  WB  Zimmerman, “The drag  on  sedimenting discs in broadside  motion in
             tubes.” International Journal of  Engineering Science, 40:7-22,  2002.
           8.  WB Zimmerman, “On the resistance of a spherical particle settling in a tube
              of viscous fluid”  in preparation.
          9.  PM Bungay  and H  Brenner,  “The  motion of  a closely-fitting  sphere in a
              fluid-filled tube.” Int. J. Multiphase Flow, 1:25, 1973.
          10.  OG Harlen, “High-Deborah-Number flow of a dilute polymer solution past
              a sphere falling along the axis of acylindrical tube” J. Non-Newtonian Fluid
             Mech. 37:157-173,  1990.
          11.  R Shail and DJ Norton, “On the slow broadside motion of a thin disc along
              the axis of a fluid-filled circular duct.” Proc. Camb. Phil. SOC., 65:793, 1969.
          12.  HA Stone, “On lubrication flows in geometries with zero local curvature,”
              private communication.
          13.  MU Kim. “On the slow broadside motion of a flat plate along the centerline
              of  a  fluid-filled  two-dimensional  channel”  J.  Phys.  Soc.  Jpn, 53( 1): 139,
              1984.
          14.  J  Mallegol,  J-P  Gorce,  0  Dupont,  C  Jeynes,  PJ  McDonald  and  JL
              Keddie,”Origins  and  effects  of  a  surfactant  excess  near  the  surface  of
              waterborne acrylic pressure-sensitive adhesives.” Preprint. 2002.
          15.  F Trogus, T  Sophany, RS Schechter, and WH Wade, “Static and dynamic
              adsorption of anions and nonionic surfactants” SPE J. 17:337-344,  1977.
          16.  WF  Ramirez,  PJ  Shuler,  and  F Friedman,  “Convection,  dispersion,  and
              adsorption of surfactants in porous media,” SPE J. 20(6):430-438,  1980.
          17.  WB Zimmerman and GM Homsy, “Nonlinear viscous fingering in miscible
              displacement  with anisotropic  dispersion.”  Physics of  Fluids A  3(8)  1859
              (1991).
          18.  SD  Howison,  JA  Moriarty,  JR  Ockendon,  EL  Terrill,  and  SK  Wilson,
              “A  mathematical  model  for  drying  paint  layers.”  J.  Engineering  Math.
              32:377-394,  1997.
   251   252   253   254   255   256   257   258   259   260   261