Page 86 - Process simulation and control using Aspen
P. 86
78 PROCESS SIMULATION AND CONTROL USING ASPEN1
B» Ebl V«- D*. TMi. Hun fW ijt MiiM m J4J«J
I f I I i PT ! .leal I - Ml tM
" I i I i i I I i
3 '-" l
"
il il -
am nil 1
1000 0541
0«5
MUM nooo 0J30 0 001
mmmi tso 601
-
ITTre 0«J
1 '
sm DOM MPPM
0 98)
nr » | HuiE«*w> ! C<*jwi fl-ctet. | FYB.M.Change.. i | UisrWodeU |
i -1 .QMi-O'
R&tac RVWd SEgJ HQtei RCSIR RPfaa RtWi
f
-
r
j 3 tecofQB.c .jjJ Heeto P yP j Jatwlpd | .Ei wprf [{ AwenPkw-S
to* « 1*35
FIGURE 2.35
Save the simulation work in a folder giving a suitable file name.
2 .4 ASPEN PLUS SIMULATION OF A RPlug MODEL
Problem statement
The combination of two benzene molecules forms one molecule of diphenyl and one of
hydrogen (Fogler, 2005). The elementary reversible vapour-phase reaction occurs in a
plug flow reactor (PER).
2CqHq <-> C12H40 + H2
benzene diphenyl hydrogen
The forward and reverse reaction rate constants are defined with respect to benzene.
The vaporized benzene (pure) with a flow rate of 0.02 Ibmol/hr enters the reactor at
1250oF and 15 Psi. The data for the Arrhenius law are given below.
Forward reaction: A; = 3.2 x lO-6 kmol/s . m3 . (N/m2)2
E = 30200 cal/mol
Reverse reaction: k = 1.0x lO-5 kmol/s . m3 . (N/m2)2
E = 30200 cal/mol
[C,]basis = Partial pressure
The reactor length is 36 in and diameter is 0.6 in. It operates at inlet temperature.
Applying the SYSOP0 thermodynamic model,
(a) compute the component mole fraction in the product stream, and
(b) produce a plot ofreactor molar composition ' (mole fraction) vs i-eactor length' (in).