Page 57 - Radiochemistry and nuclear chemistry
P. 57

46                  Radiochemistry and Nuclear Chemistry


                                   TABLE  3.1. Atomic  masses  and binding  energies.

                                      Atomic mass   Mass exor, aa   Mass defect   Binding   EB/A
                 ~-~n=m   z   N   .4     u z    M z -,4   aM z   ~,,~,~ tr B   (M~v/,1)
                                          (u)    (~u)   (~u)     (M 9
                 n       0   1   1      1.008 665   8 665   0     -          -
                 H       1   0   1      1.007 825   7 825   0     -          -
                 D       1   1   2      2.014  102   14 102   -2 388   2.22   1.11
                 T       1   2   3      3.016 049   16 049   -9 106   8.48   2.83
                 He      2   1   3      3.016 029   16 029   -8 286   7.72   2.57
                 He      2   2   4      4.1302 603   2 603   -30 377   28.30   7.07
                 He      2   4   6      6.018 886   18 886   -31  424   29.27   4.88
                 Li      3   3   6      6.015  121   15 121   -34 348   32.00   5.33
                 Li      3   4   7      7.016 003   16 003   -42  132   39.25   5.61
                 Be      4   3   7      7.016 928   16 928   -40 367   37.60   5.37
                 Be      4   5   9      9.012  182   12 182   -62 442   58.16   6.46
                 Be      4   6   10    10.013 534   13 534   -69 755   64.98   6.50
                 B       5   5   10    10.012 937   12 937   -69 513   64.75   6.48
                 B       5   6   11    11.009 305   9 305   -81 809   76.20   6.93
                 C       6   6   12    12.000 000   0   -98 940   92.16     7.68
                 N       7   7   14    14.003 074   3 074   -112 356   104.7   7.48
                 O       8   8   16    15.994 915   -5 085   -137 005   127.6   7.98
                 F       9   10   19   18.998 403   -1 597   -158 671   147.8   7.78
                 Ne      10   10   20   19.992 436   -7 564   -172 464   160.6   8.03
                 Na      11   12   23   22.989  768   -10 232   -200 287   186.6   8.11
                 Mg      12   12   24   23.985 042   -14 958   -212 837   198.3   8.26
                 AI      13   14   27   26.981 539   -18 461   -241 495   225.0   8.33
                 Si      14   14   28   27.976 927   -23 073   -253 932   236.5   8.45
                 P       15   16   31   30.973  762   -26 238   -282 252   262.9   8.48
                 K       19   20   39   38.963  707   -36 293   -358 266   333.7   8.56
                 Co      27   32   59   58.933  198   -66 802   -555 355   517.3   8.77
                 Zr      40   54   94   93.906 315   -93 685   -874 591   814.7   8.67
                 Ce      58   82   140   139.905 433   -94 567   -1 258 941   1 172.7   8.38
                 Ta      73   108   181   180.947 993   -52 007   -1  559 045   1 452.2   8.02
                 148     80  119   199   198.968 254   -31 746   -I 688 872   1 573.2   7.91
                 Th      90   142   232   232.038 051   38 051   -1 896 619   1 766.7   7.62
                 U       92   143   235   235.043 924   43 924   -1 915 060   1 783.9   7.59
                 U       92   144   236   236.045 563   45 563   -1 922 087   1 790.4   7.59
                 U       92  146   238   238.050 785   50 785   -I 934 195   1 801.7   7.57
                 PU      94   146   240   240.053 808   53 808   -1  946 821   1 813.5   7.56



                                              ~A  =  MA  --  A                       (3.4)

               Mass  excess  values are either given  in u  (or,  more commonly,  in micro  mass  units,  #u)  or
               in eV  (usually keV).  Table 3.1  contains a number of atomic masses,  mass excess,  and mass
               defect  values,  as  well  as  some  other  information  which  is  discussed  in  later  sections.
                When two  dements  form a compound in a chemical  system,  the amount of heat liberated
               is a measure of the stability of the compound.  The greater this heat of formation  (enthalpy,
               AH)  the  greater  the  stability  of  the compound.  When  carbon  is  combined  with  oxygen  to
               form  CO 2,  it  is  found  experimentally  that  393  kJ  of  heat  is  evolved  per  mole  of  CO 2
               formed.  If we use  the Einstein  relationship,  we can calculate that this would  correspond  to
               a total mass  loss  of 4.4  x  10 -9  g  for each mole of CO 2 formed  (44 g).  Although  chemists
               do  not  doubt  that  this  mass  loss  actually  occurs,  at  present  there  are  no  instruments  of
               sufficient  sensitivity  to  measure  such  small  changes.
                The  energy  changes  in nuclear  reactions  are much  larger.  This  can be  seen  if we  use  the
               relationship between electron volts and joules (or calories) in Appendix IV, and observe that
   52   53   54   55   56   57   58   59   60   61   62