Page 13 - Rapid Learning in Robotics
P. 13

LIST OF FIGURES                                                                          xi


                     8.3   [a–b] Mapping accuracy of the inverse finger kinematics
                          problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
                     8.4   [a–b] The robot finger training data for the MLP networks . 112
                     8.5   [a–c] The training data for the PSOM networks. . . . . . . . 113
                     8.6   The six Puma axes . . . . . . . . . . . . . . . . . . . . . . . . . 114
                     8.7   Spatial accuracy of the 6 DOF inverse robot kinematics . . . 116
                     8.8   PSOM adaptability to sudden changes in geometry . . . . . 118
                     8.9   Modulating the cost function: “discomfort” example . . . . . 121
                     8.10 [a–d] Intermediate steps in optimizing the mobility reserve 121
                     8.11 [a–d] The PSOM resolves redundancies by extra constraints 123

                     9.1   Context dependent mapping tasks . . . . . . . . . . . . . . . 126
                     9.2   The investment learning phase . . . . . . . . . . . . . . . . . . 127
                     9.3   The one-shot adaptation phase . . . . . . . . . . . . . . . . . . . 128
                     9.4   [a–b] The “mixture-of-experts” versus the “mixture-of-expertise”
                          architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
                     9.5   [a–c] Three variants of the “mixture-of-expertise” architecture131
                     9.6   [a–b] 2 D visuo-motor coordination . . . . . . . . . . . . . . 133
                     9.7   [a–b] 3 D visuo-motor coordination with stereo vision . . . . 136

































                    (10/207) Illustrations contributed by Dirk Selle [2.5], Ján Jockusch [2.8,
                 2.9], and Bernd Fritzke [6.8].
   8   9   10   11   12   13   14   15   16   17   18