Page 12 - Rapid Learning in Robotics
P. 12

x                                                                     LIST OF FIGURES


                             4.10 Example node placement 3 4   2 ... ... .. ... ... .                 57


                             5.1   [a–d] PSOM mapping example 3 3 nodes . . . . . . . . . .          64
                             5.2   [a–d] PSOM mapping example 2 2 nodes . . . . . . . . . .          65
                             5.3   Isometric projection of the 2 2 PSOM manifold . . . . . . .        65
                             5.4   [a–c] PSOM example mappings 2 2 2 nodes . . . . . . . .           66
                             5.5   [a–h] 3   3 PSOM trained with a unregularly sampled set .         67
                             5.6   [a–e] Different interpretations to a data set . . . . . . . . . .  69
                             5.7   [a–d] Topological defects . . . . . . . . . . . . . . . . . . . .  70
                             5.8   The map beyond the convex hull of the training data set . .       71
                             5.9   Non-continuous response . . . . . . . . . . . . . . . . . . . .    73

                             5.10 The transition from a continuous to a non-continuous re-
                                   sponse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73


                             6.1   [a–b] The multistart technique . . . . . . . . . . . . . . . . .   76
                             6.2   [a–d] The Local-PSOM procedure . . . . . . . . . . . . . . .       79
                             6.3   [a–h] The Local-PSOM approach with various sub-grid sizes 80
                             6.4   [a–c] The Local-PSOM sub-grid selection . . . . . . . . . . .      81
                             6.5   [a–c] Chebyshev spacing . . . . . . . . . . . . . . . . . . . . .  84
                             6.6   [a–b] Mapping accuracy for various PSOM networks . . . .          85

                             6.7   [a–d] PSOM manifolds with a 5 5 training set . . . . . . . .       86
                             6.8   [a–d] Same test function approximated by LLM units          .. .  87
                             6.9   RLC-Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88
                             6.10 [a–d] RLC example: 2 D projections of one PSOM manifold            90
                             6.11 [a–h] RLC example: two 2 D projections of several PSOMs .          92

                             7.1   [a–d] Example image feature completion: the Big Dipper . .        96
                             7.2   [a–d] Test object in several normal orientations and depths .     98

                             7.3   [a–f] Reconstruced object pose examples . . . . . . . . . . . 99
                             7.4   Sensor fusion improves reconstruction accuracy . . . . . . . 101
                             7.5   [a–c] Input image and processing steps to the PSOM finger-
                                   tip finder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
                             7.6   [a–d] Identification examples of the PSOM fingertip finder . 105
                             7.7   Functional dependences fingertip example . . . . . . . . . . 106

                             8.1   [a–d] Kinematic workspace of the TUM robot finger . . . . . 108
                             8.2   [a–e] Training and testing of the finger kinematics PSOM . . 110
   7   8   9   10   11   12   13   14   15   16   17