Page 7 - Rapid Learning in Robotics
P. 7

Contents






                     Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ii
                     Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . .   iii
                     Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . .  iv
                     Table of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

                 1 Introduction                                                               1


                 2 The Robotics Laboratory                                                    9
                     2.1   Actuation: The Puma Robot . . . . . . . . . . . . . . . . . . .     9
                     2.2   Actuation: The Hand “Manus” . . . . . . . . . . . . . . . . .     16
                          2.2.1   Oil model . . . . . . . . . . . . . . . . . . . . . . . . .  17
                          2.2.2   Hardware and Software Integration . . . . . . . . . .      17
                     2.3   Sensing: Tactile Perception . . . . . . . . . . . . . . . . . . . .  19
                     2.4   Remote Sensing: Vision . . . . . . . . . . . . . . . . . . . . . .  21
                     2.5   Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . .  22


                 3 Artificial Neural Networks                                                 23
                     3.1   A Brief History and Overview of Neural Networks . . . . .         23
                     3.2   Network Characteristics . . . . . . . . . . . . . . . . . . . . .  26
                     3.3   Learning as Approximation Problem . . . . . . . . . . . . . .     28
                     3.4   Approximation Types . . . . . . . . . . . . . . . . . . . . . . .  31
                     3.5   Strategies to Avoid Over-Fitting . . . . . . . . . . . . . . . . .  35
                     3.6   Selecting the Right Network Size . . . . . . . . . . . . . . . .  37
                     3.7   Kohonen's Self-Organizing Map . . . . . . . . . . . . . . . .     38
                     3.8   Improving the Output of the SOM Schema . . . . . . . . . .        41

                 4 The PSOM Algorithm                                                        43
                     4.1   The Continuous Map . . . . . . . . . . . . . . . . . . . . . . .  43
                     4.2   The Continuous Associative Completion        . . . . . . . . . . .  46



                 J. Walter “Rapid Learning in Robotics”                                                    v
   2   3   4   5   6   7   8   9   10   11   12