Page 8 - Rapid Learning in Robotics
P. 8

vi                                                                           CONTENTS


                             4.3   The Best-Match Search . . . . . . . . . . . . . . . . . . . . . .  51
                             4.4   Learning Phases . . . . . . . . . . . . . . . . . . . . . . . . . .  53
                             4.5   Basis Function Sets, Choice and Implementation Aspects . .         56

                             4.6   Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60

                          5  Characteristic Properties by Examples                                   63
                             5.1   Illustrated Mappings – Constructed From a Small Number
                                   of Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63
                             5.2   Map Learning with Unregularly Sampled Training Points . .         66

                             5.3   Topological Order Introduces Model Bias . . . . . . . . . . .      68
                             5.4   “Topological Defects” . . . . . . . . . . . . . . . . . . . . . . .  70
                             5.5   Extrapolation Aspects . . . . . . . . . . . . . . . . . . . . . .  71
                             5.6   Continuity Aspects . . . . . . . . . . . . . . . . . . . . . . . . 72
                             5.7   Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74


                          6  Extensions to the Standard PSOM Algorithm                               75
                             6.1   The “Multi-Start Technique” . . . . . . . . . . . . . . . . . . .  76
                             6.2   Optimization Constraints by Modulating the Cost Function           77
                             6.3   The Local-PSOM . . . . . . . . . . . . . . . . . . . . . . . . .   78
                                   6.3.1   Approximation Example: The Gaussian Bell . . . . .         80

                                   6.3.2   Continuity Aspects: Odd Sub-Grid Sizes n Give Op-
                                           tions . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80

                                   6.3.3   Comparison to Splines . . . . . . . . . . . . . . . . . .  82
                             6.4   Chebyshev Spaced PSOMs . . . . . . . . . . . . . . . . . . . .     83
                             6.5   Comparison Examples: The Gaussian Bell . . . . . . . . . . .       84
                                   6.5.1   Various PSOM Architectures . . . . . . . . . . . . . .     85
                                   6.5.2   LLM Based Networks . . . . . . . . . . . . . . . . . .     87
                             6.6   RLC-Circuit Example . . . . . . . . . . . . . . . . . . . . . . .  88
                             6.7   Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91


                          7  Application Examples in the Vision Domain                               95
                             7.1   2 D Image Completion . . . . . . . . . . . . . . . . . . . . . .   95
                             7.2   Sensor Fusion and 3 D Object Pose Identification . . . . . . .      97
                                   7.2.1   Reconstruct the Object Orientation and Depth . . . .      97
                                   7.2.2   Noise Rejection by Sensor Fusion . . . . . . . . . . . .   99
                             7.3   Low Level Vision Domain: a Finger Tip Location Finder . . . 102
   3   4   5   6   7   8   9   10   11   12   13