Page 161 - Rapid Learning in Robotics
P. 161
Bibliography
Anderson, J. and e. E. Rosenfeld (1988). Neurocomputing: Foundations of
Research. MIT Press.
Arbib, M. (1995). The Handbook of Brain Theroy and Neural Networks. Brad-
ford MIT Press. (ed.).
Atkeson, C. (1992, 10-1990). Memory based approaches to approximat-
ing continous functions. In M. Casdagli and S. Eubank (Eds.), Non-
linear Modeling and Forecasting, pp. 503–521. Addison-Wesley.
Baader, A. (1995). Ein Umwelterfassungssystem für multisensorielle Mon-
tageroboter. Meß- Steuerungs- und Regeltechnik, Nr. 486. VDI-Verlag
Düsseldorf.
Bauer, H.-U. and K. Pawelzik (1991). Quantifying the neighborhood
preservation of self-organizing feature maps. IEEE Transactions on
Neural Networks 3(4), 570–579.
Breimann, L., J. Friedman, R. Olshen, and C. Stone (1984). Classification
and regression trees. Wadsworth Inc.
Cleveland, W. (1979). Robust locally weighted regression ans smoothing
scatter plots. J. Amer. Statist. Assoc. 74, 828–836.
Cleveland, W. S. and S. J. Devlin (1988). Locally weighted regression:
An approach to regression analysis by local fitting. J. Amer. Statist.
Assoc. 83, 598–610.
Craven, P. and G. Wahba (1979). Smoothing noisy data with spline func-
tions. estimating the correct degree of smoothing by the method of
generalized cross-validation. Numer. Math. 31, 317–403.
Cun, Y. L., J. Denker, and S. Solla (1990). Optimal brain damage. In
D. Touretzky (Ed.), NIPS*89, Volume 2, pp. 598–605. Morgan Kauf-
mann.
J. Walter “Rapid Learning in Robotics” 147