Page 162 - Rapid Learning in Robotics
P. 162

148                                                                    BIBLIOGRAPHY


                             Cybenko, G. (1989). Approximation by superpositions of a sigmoidal
                                function. Mathematics of Control, Signals and Systems 2, 303–314.

                             Davis, P. (1975). Interpolation and Approximation. Dover Pub., New York.

                             Dücker, C. (1995). Parametrisierte Bewegungsprimitive für ein Roboter–
                                Kraft/Momenten–Sensor Handsystem. Diplomarbeit, Technische
                                Fakultät, Universität Bielefeld.

                             Fahlman, S. and C. Lebiere (1990). The cascade-correlation learning ar-
                                chitecture. In D. Touretzky (Ed.), NIPS*89, Volume 2, pp. 524–532.
                                Morgan Kaufmann.

                             Farmer, J. D. and J. J. Sidorowich (1988, mar). Exploiting chaos to predict
                                the future and reduce noise. Tech. Rep. LA-UR-88-901, Los Alamos
                                National Laboratory.
                             Frean, M. (1990). The upstart algorithm: a method for constructing and
                                training feedforward neural networks. Neural Computation 2, 198–
                                209.

                             Friedman, J. H. (1991). Multivariate adaptive regression splines. The An-
                                nals of Statistics 19(1), 1–141. (with discussion).

                             Fritzke, B. (1991). Let it grow – self-organizing feature maps with prob-
                                lem depended cell structure. In t. Kohonen et al. (Ed.), Proc. Int. Conf.
                                on Artificial Neural Networks (ICANN-91), Espoo, Finland, pp. 403–408.
                                North-Holland, Amsterdam.

                             Fritzke, B. (1995). Incremenal learning of local linear mappings. In Proc.
                                Int. Conf. on Artificial Neural Networks (ICANN-95), Paris, Volume 1,
                                pp. 217–222.

                             Fu, K., R. Gonzalez, and C. Lee (1987). Robotics : Control, Sensing, Vision,
                                and Intelligence. McGraw-Hill.

                             Geman, S., E. Bienenstock, and R. Doursat (1992). Neural networks and
                                the bias/variance dilemma. Neural Computation 4, 1–58.

                             Goldberg, D. (1989). Genetic Algorithms in Search, Optimization, and Ma-
                                chine Learning. Addison-Wesley.
                             Hämmerlin, G. and K.-H. Hoffmann (1991). Numerical Mathematics.
                                Springer, New York.
   157   158   159   160   161   162   163   164   165   166   167