Page 162 - Rapid Learning in Robotics
P. 162
148 BIBLIOGRAPHY
Cybenko, G. (1989). Approximation by superpositions of a sigmoidal
function. Mathematics of Control, Signals and Systems 2, 303–314.
Davis, P. (1975). Interpolation and Approximation. Dover Pub., New York.
Dücker, C. (1995). Parametrisierte Bewegungsprimitive für ein Roboter–
Kraft/Momenten–Sensor Handsystem. Diplomarbeit, Technische
Fakultät, Universität Bielefeld.
Fahlman, S. and C. Lebiere (1990). The cascade-correlation learning ar-
chitecture. In D. Touretzky (Ed.), NIPS*89, Volume 2, pp. 524–532.
Morgan Kaufmann.
Farmer, J. D. and J. J. Sidorowich (1988, mar). Exploiting chaos to predict
the future and reduce noise. Tech. Rep. LA-UR-88-901, Los Alamos
National Laboratory.
Frean, M. (1990). The upstart algorithm: a method for constructing and
training feedforward neural networks. Neural Computation 2, 198–
209.
Friedman, J. H. (1991). Multivariate adaptive regression splines. The An-
nals of Statistics 19(1), 1–141. (with discussion).
Fritzke, B. (1991). Let it grow – self-organizing feature maps with prob-
lem depended cell structure. In t. Kohonen et al. (Ed.), Proc. Int. Conf.
on Artificial Neural Networks (ICANN-91), Espoo, Finland, pp. 403–408.
North-Holland, Amsterdam.
Fritzke, B. (1995). Incremenal learning of local linear mappings. In Proc.
Int. Conf. on Artificial Neural Networks (ICANN-95), Paris, Volume 1,
pp. 217–222.
Fu, K., R. Gonzalez, and C. Lee (1987). Robotics : Control, Sensing, Vision,
and Intelligence. McGraw-Hill.
Geman, S., E. Bienenstock, and R. Doursat (1992). Neural networks and
the bias/variance dilemma. Neural Computation 4, 1–58.
Goldberg, D. (1989). Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Addison-Wesley.
Hämmerlin, G. and K.-H. Hoffmann (1991). Numerical Mathematics.
Springer, New York.