Page 106 - Refining Biomass Residues for Sustainable Energy and Bioproducts
P. 106
Microbial-derived natural bioproducts for a sustainable environment 79
Findlay, R.H., White, D.C., 1983. Polymeric beta-hydroxyalkanoates from environmental
samples and Bacillus megaterium. Appl. Environ. Microbiol. 45 (1), 71 78.
Flemming, H.C., Leis, A., 2002. Sorption properties of biofilms. In: Flemming, H.-C., Bitton,
G. (Eds.), Encyclopedia of Environmental Microbiology. John Wiley & Sons, New
York, vol. 5, pp. 2958 2967.
Flemming, H.C., Wingender, J., 2001. Relevance of microbial extracellular polymeric sub-
stances (EPSs)—Part I: structural and ecological aspects. Water Sci. Technol. 43 (6),
1 8.
Flemming, H.C., Wingender, J., 2010. The biofilm matrix. Nat. Rev. Microbiol. 8, 623 633.
Freitas, F., Alves, V.D., Reis, M.A., 2011. Advances in bacterial exopolysaccharides: from
production to biotechnological applications. Trends Biotechnol. 29 (8), 388 398.
Fusconi, R., Godinho, M.J.L., Bossolan, N.R.S., 2008. Culture and exopolysaccharide pro-
duction from sugarcane molasses by Gordonia polyisoprenivorans CCT 7137, isolated
from contaminated groundwater in Brazil. World J. Microbiol. Biotechnol. 24 (7),
937 943.
Gandhi, H.P., Ray, R.M., Patel, R.M., 1997. Exopolymer production by Bacillus species.
Carbohydr. Polym. 34 (4), 323 327.
Ganzeveld, K.J., van Hagen, A., van Agteren, M.H., de Koning, W., Uiterkamp, A.J.S.,
1999. Upgrading of organic waste: production of the copolymer poly-3-hydroxybuty-
rate-co-valerate by Ralstonia eutropha with organic waste as sole carbon source.
J. Cleaner Prod. 7 (6), 413 419.
Grage, K., Jahns, A.C., Parlane, N., Palanisamy, R., Rasiah, I.A., Atwood, J.A., et al., 2009.
Bacterial polyhydroxyalkanoate granules: biogenesis, structure, and potential use as
nano-/micro-beads in biotechnological and biomedical applications. Biomacromolecules
10 (4), 660 669.
Gupta, A., Thakur, I.S., 2016. Study of optimization of wastewater contaminant removal
along with extracellular polymeric substances (EPS) production by a thermotolerant
Bacillus sp. ISTVK1 isolated from heat shocked sewage sludge. Bioresour. Technol.
213, 21 30.
Gupta, P., Diwan, B., 2017. Bacterial exopolysaccharide mediated heavy metal removal: a
review on biosynthesis, mechanism and remediation strategies. Biotechnol. Rep. 13,
58 71.
Gupta, A., Kumar, M., Thakur, I.S., 2017. Analysis and optimization of process parameters
for production of Polyhydroxyalkanoates along with wastewater treatment by Serratia
sp. ISTVKR1. Bioresour. Technol. 242, 55 59.
Haas, R., Jin, B., Zepf, F.T., 2008. Production of poly (3-hydroxybutyrate) from waste potato
starch. Biosci. Biotechnol. Biochem. 72 (1), 53 256.
Harding, K.G., Dennis, J.S., Von Blottnitz, H., Harrison, S.T.L., 2007. Environmental
analysis of plastic production processes: comparing petroleum-based polypropylene
and polyethylene with biologically-based poly-β-hydroxybutyric acid using life cycle
analysis. J. Biotechnol. 130 (1), 57 66.
Haywood, G.W., Anderson, A.J., Williams, D.R., Dawes, E.A., Ewing, D.F., 1991.
Accumulation of a poly(hydroxyalkanoate) copolymer containing primarily 3-
hydroxyvalerate from simple carbohydrate substrates by Rhodococcus sp. NCIMB
40126. Int. J. Biol. Macromol. 13 (2), 83 88.
Hohenschuh, W., Kumar, D., Murthy, G.S., 2014. Economic and cradle-to-gate life cycle
assessment of poly-3-hydroxybutyrate production from plastic producing, genetically
modified hybrid poplar leaves. J. Renew. Sustain. Energy 6 (6), 063113.