Page 108 - Refining Biomass Residues for Sustainable Energy and Bioproducts
P. 108
Microbial-derived natural bioproducts for a sustainable environment 81
Liu, Y., Fang, H.H., 2003. Influences of extracellular polymeric substances (EPS) on floccu-
lation, settling, and dewatering of activated sludge. Crit. Rev. Environ. Sci. Technol.
2003 (33), 237 273.
Liu, A., Ahn, I.S., Mansfield, C., Lion, L.W., Shuler, M.L., Ghiorse, W.C., 2001.
Phenanthrene desorption from soil in the presence of bacterial extracellular polymer:
observations and model predictions of dynamic behaviour. Water Res. 35 (3), 835 843.
Luengo, J.M., Garcı ´a, B., Sandoval, A., Naharro, G., Olivera, E.R., 2003. Bioplastics from
microorganisms. Curr. Opin. Microbial. 6 (3), 251 260.
Madhuri, K.V., Prabhakar, K.V., 2014. Microbial exopolysaccharides: biosynthesis and
potential applications. Orient J. Chem. 30, 1401 1410.
Madison, L.L., Huisman, G.W., 1999. Metabolic engineering of poly(3-hydroxyalkanoates):
from DNA to plastic. Mol. Biol. Rev. 63 (1), 21 53.
Maheshwari, N., Kumar, M., Thakur, I.S., Srivastava, S., 2018. Production, process optimiza-
tion and molecular characterization of polyhydroxyalkanoate (PHA) by CO 2 sequester-
ing B. cereus SS105. Bioresour. Technol. 254, 75 82.
Majumder, A., Singh, A., Goyal, A., 2009. Application of response surface methodology for
glucan production from Leuconostoc dextranicum and its structural characterization.
Carbohydr. Polym. 75 (1), 150 156.
McSwain, B.S., Irvine, R.L., Hausner, M., Wilderer, P.A., 2005. Composition and distribu-
tion of extracellular polymeric substances in aerobic flocs and granular sludge. Appl.
Environ. Microbiol. 71 (2), 1051 1057.
Medhi, K., Mishra, A., Thakur, I.S., 2018. Genome sequence of a heterotrophic nitrifier and
aerobic denitrifier, Paracoccus denitrificans strain ISTOD1, isolated from wastewater.
Genome Announc. 6 (15), e00210 e00218.
Miller, S.A., Landis, A.E., Theis, T.L., 2007. Feature: Environmental Trade-Offs of Biobased
Production. pp. 5176 5182.
Mobley, D.P., 1994. Plastics From Microbes. Hanser Publishers.
Morais, C.C., 2013. Production of Bacterial Biopolymers From Industrial Fat-Containing
Wastes (Doctoral dissertation). Faculdade de Ciˆ encias e Tecnologia.
More, T.T., Yadav, J.S.S., Yan, S., Tyagi, R.D., Surampalli, R.Y., 2014. Extracellular poly-
meric substances of bacteria and their potential environmental applications. J. Environ.
Manage. 144, 1 25.
Morillo, J.A., Aguilera, M., Ramos-Cormenzana, A., Monteoliva-Sa ´nchez, M., 2006.
Production of a metal-binding exopolysaccharide by Paenibacillus jamilae using two-
phase olive-mill waste as fermentation substrate. Curr. Microbiol. 53 (3), 189 193.
Narodoslawsky, M., Shazad, K., Kollmann, R., Schnitzer, H., 2015. LCA of PHA production
—identifying the ecological potential of bio-plastic. Chem. Biochem. Eng. Q 29 (2),
299 305.
Nguyen, V.H., Nguyen, H.K., Nguyen, T.D., Pham, T.L., Dang-Thi, C.H., Song, Y., et al.,
2017. Sources for isolation of extracellular polymeric substances (EPSs) producing bac-
terial strains which are capable of using wastewater sludge as solo substrate. Environ.
Technol. 40, 1 10.
Nichols, C.M., Guezennec, J., Bowman, J.P., 2005. Bacterial exopolysaccharides from
extreme marine environments with special consideration of the southern ocean, sea ice,
and deep-sea hydrothermal vents: a review. Mar. Biotechnol. 7 (4), 253 271.
Nicolaus, B., Kambourova, M., Oner, E.T., 2010. Exopolysaccharides from extremophiles:
from fundamentals to biotechnology. Environ. Technol. 31 (10), 1145 1158.
Nielsen, P.H., Jahn, A., Palmgren, R., 1997. Conceptual model for production and composi-
tion of exopolymers in biofilms. Water Sci. Technol. 36 (1), 11 19.