Page 109 - Refining Biomass Residues for Sustainable Energy and Bioproducts
P. 109
82 Refining Biomass Residues for Sustainable Energy and Bioproducts
Nouha, K., Kumar, R.S., Balasubramanian, S., Tyagi, R.D., 2018. Critical review of EPS pro-
duction, synthesis and composition for sludge flocculation. J. Environ. Sci. 66,
225 245.
Nwodo, U.U., Green, E., Okoh, A.I., 2012. Bacterial exopolysaccharides: functionality and
prospects. Int. J. Mol. Sci. 13 (11), 14002 14015.
Okamura, K., Marchessault, R.H., 1967. X-ray structure of poly-b-hydroxybutyrate.
In: Ramachandran, G.M. (Ed.), Conformation of Biopolymers. Academic Press, New
York, pp. 709 720.
Orts, W.J., Marchessault, R.H., Bluhm, T.L., 1991. Thermodynamics of the melting point
depression in poly(β-hydroxybutyrate-co-β-hydroxyvalerate) copolymers.
Macromolecules. 24 (24), 6435 6438.
Pagliano, G., Ventorino, V., Panico, A., Pepe, O., 2017. Integrated systems for biopolymers
and bioenergy production from organic waste and by-products: a review of microbial
processes. Biotechnol. Biofuels 10 (1), 113.
Patel, A., Prajapat, J.B., 2013. Food and health applications of exopolysaccharides produced
by lactic acid bacteria. Adv. Dairy Res. 1 (2), 1 8.
Pathak, M., Devi, A., Bhattacharyya, K.G., Sarma, H.K., Subudhi, S., Lal, B., 2015. Production
of a non-cytotoxic bioflocculant by a bacterium utilizing a petroleum hydrocarbon source
and its application in heavy metal removal. RSC Adv. 5 (81), 66037 66046.
Peng, L., Yang, C., Zeng, G., Wang, L., Dai, C., Long, Z., et al., 2014. Characterization and
application of bioflocculant prepared by Rhodococcus erythropolis using sludge and
livestock wastewater as cheap culture media. Appl. Microbiol. Biotechnol. 98 (15),
6847 6858.
Pietrini, M., Roes, L., Patel, M.K., Chiellini, E., 2007. Comparative life cycle studies on poly
(3-hydroxybutyrate)-based composites as potential replacement for conventional petro-
chemical plastics. Biomacromolecules 8 (7), 2210 2218.
Pindar, D.F., Bucke, C., 1975. The biosynthesis of alginic acid by Azotobacter vinelandii.
Biochem. J. 152 (3), 617 622.
Plank, J., 2005. Applications of biopolymers in construction engineering. In: Steinbu ¨chel, A.
(Ed.), Biopolymers Online: Biology Chemistry Biotechnology Applications, vol. 10.
Wiley VCH, Weinheim, pp. 29 95.
Platt, R.M., Geesey, G.G., Davis, J.D., White, D.C., 1985. Isolation and partial chemical
analysis of firmly bound exopolysaccharide from adherent cells of a freshwater sediment
bacterium. Can. J. Microbiol. 31 (8), 675 680.
Poli, A., Anzelmo, G., Nicolaus, B., 2010. Bacterial exopolysaccharides from extreme marine
habitats: production, characterization and biological activities. Mar. Drugs 8 (6),
1779 1802.
Poli, A., Di Donato, P., Abbamondi, G.R., Nicolaus, B., 2011. Synthesis, production, and bio-
technological applications of exopolysaccharides and polyhydroxyalkanoates by archaea.
Archaea vol. 2011, Article ID: 693253, 13 pages.
Pollock, T.J., 2002. Sphingas groups of exopolysaccharides (EPS). In: Vandamme, E.J., De
Baets, S., Steinbu ¨chel, A. (Eds.), In Biopolymers Polysaccharides I. Wiley-VCH
Verlag GmbH: Weinheim, Germany, pp. 239 253
Priester, J.H., Olson, S.G., Webb, S.M., Neu, M.P., Hersman, L.E., Holden, P.A., 2006.
Enhanced exopolymer production and chromium stabilization in Pseudomonas putida
unsaturated biofilms. Appl. Environ. Microbiol. 72 (3), 1988 1996.
Rajoka, M.S.R., Mehwish, H.M., Hayat, H.F., Hussain, N., Sarwar, S., Aslam, H., et al.,
2018. Characterization, the antioxidant and antimicrobial activity of exopolysaccharide
isolated from poultry origin lactobacilli. Probiotics Antimicrob. Proteins 1 11.