Page 329 - Renewable Energy Devices and System with Simulations in MATLAB and ANSYS
P. 329

316             Renewable Energy Devices and Systems with Simulations in MATLAB  and ANSYS ®
                                                                                ®

            REFERENCES
               1.  EG & G Services Parsons, Inc.,  Fuel Cell Handbook, 7th edn., Science  Applications International
                Corporation, U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory,
                Morgantown, WV, 2004.
               2.  J. Larminie and A. Dicks, Fuel Cell Systems Explained, John Wiley & Sons, Ltd., Chicester, U.K., 2000,
                pp. 63–65.
               3.  J. Thijssen and W. Teagan, Long-term prospects for PEMFC and SOFC in vehicle applications, SAE 2002
                World Congress, Paper No. 2002-01-0414, March 4–7, 2002, 14pp.
               4.  J. Zizelman, S. Shaffer, and S. Mukerjee, Solid oxide fuel cell auxiliary power unit—A development
                update, SAE 2002 World Congress, Detroit, MI, Paper No. 2002-01-0411, 2002, 10pp.
               5.  K. Rajashekara, Power conversion and control strategies for fuel cell vehicles, Proceedings of IEEE
                International Conference of the Industrial Electronics Society (IECON), Vol. 3, 2003, pp. 2865–2870.
               6.  R. Remick and D. Wheeler, Molten carbonate and phosphoric acid stationary fuel cells: Overview and
                gap analysis, Technical report, NREL/TP-560-49072, September 2010.
               7.  K. Rajashekara, Propulsion system strategies for fuel cell vehicles, SAE 2000 World Congress, Detroit,
                MI, March 6–9, 2000, 11pp.
               8.  E. Santi, D. Franzoni, A. Monti, D. Patterson, F. Ponci, and N. Barry, A fuel cell based domestic
                uninterruptible power supply, in Proceedings of IEEE Applied Power Electronics Conference, 2002,
                pp. 605–613.
               9.  Kartha and Grimes, Physics Today, 11, 1994, p. 54.
              10.  P. T. Krein, R. S. Balog, and X. Geng, High-frequency link inverter for fuel cells based on multiple-
                carrier PWM, IEEE Transactions on Power Electronics, 19(5), September 2004, 1279–1288.
              11.  T. A. Nergaard, J. F. Ferrell, L. G. Leslie, and J. S. Lai, Design considerations for a 48 V fuel cell to
                split single phase inverter system with ultracapacitor energy storage, in Proceedings of IEEE Power
                Electronics Specialists Conference, 2002, pp. 2007–2012.
              12.  A. Drolia, P. Jose, and N. Mohan, An approach to connect ultracapacitor to fuel cell powered electric
                vehicle and emulating fuel cell characteristics using switched mode converter, in Proceedings of IEEE
                Conference of Industrial Electronics Society (IECON) 2003, pp. 897–901.
              13.  M. Uzunoglu and M. S. Alam, Dynamic modeling, design and simulation of a combined PEM fuel
                cell and ultracapacitor system for stand-alone residential applications, IEEE Transactions on Energy
                Conversion, 21(3), September 2006, 767–775.
              14.  C. Wang and M. H. Nehrir, Load transient mitigation for stand-alone fuel cell power generation systems,
                IEEE Transactions on Energy Conversion, 22(4), December 2007, 864–872.
              15.  M. Harfman Todorovic, L. Palma, and P. Enjeti, Design of a wide input range DC-DC converter with a
                robust power control scheme suitable for fuel cell power conversion, IEEE Transactions on Industrial
                Electronics, 55(3), 2008, 1247–1255.
              16.  F. Ciancetta, A. Ometto, and N. Rotondale, Supercapacitor to provide current step variation in FC PEM,
                in Proceedings of IEEE International Conference on Clean Energy Power, 2007, pp. 439–443.
              17.  R. S. Gemmen, Analysis for the effect of inverter ripple current on fuel cell operating condition, Journal
                on Fluid Engineering, 125, 2003, 576–585.
              18.  S. K. Mazumder, R. K. Burra, and K. Acharya, A ripple-mitigating and energy-efficient fuel cell power-
                conditioning system, IEEE Transactions on Power Electronics, 22, 2007, 1437–1452.
              19.  U. R. Prasanna, P. Xuewei, A. Rathore, and K. Rajashekara, Propulsion system architecture and power
                conditioning topologies for fuel cell vehicles,  IEEE  Transactions  on  Industry  Applications, 51(1),
                January/February 2015, 640–650.
              20.  T. Matsumoto and N. Watanabe, Development of fuel cell hybrid vehicle, SAE Congress, Detroit, MI,
                Paper No. 2002-01-0096, 2002, 7pp.
              21.  T. Ishikawa, S. Hamaguchi,  T. Shimizu,  T. Yano, S. Sasaki, K. Kato, M.  Ando, and H. Yoshida,
                Development of next generation fuel-cell hybrid system-consideration of high voltage system, 2004 SAE
                World Congress, Detroit, MI, Paper No. 2004-01-1304, March 8–11, 2004, 8pp.
              22.  K. Rajashekara, J. Fattic, and H. Husted, Comparative study of new on-board power generation tech-
                nologies for automotive applications, IEEE Workshop on Power Electronics in Transportation, Auburn
                Hills, MI, October 2002, pp. 3–10.
              23.  H. Husted, Dual-voltage electrical system with a fuel cell power unit,  SAE  Future Transportation
                Technology Conference, Costa Mesa, CA, August 21–23, 2000, 9pp.
              24.  K. Rajashekara, Present status and future trends in electric vehicle propulsion technologies, IEEE Journal
                of Emerging and Selected Topics in Power Electronics, 1(1), March 2013, 3–10.
   324   325   326   327   328   329   330   331   332   333   334