Page 276 - Rock Mechanics For Underground Mining
P. 276

EXCAVATION DESIGN IN BLOCKY ROCK

                                        distance u y . Displacements u s and u n , with the directions indicated in Figure 9.15b,
                                        occur at the joint surface, and the normal and shear forces are incrementally perturbed,
                                        changing to the new equilibrium values N and S. Since the prism is not deformed in
                                        the joint relaxation, joint deformations, u s and u n , are readily related to the vertical,
                                        rigid-body displacement, u y , of the prism. From Figure 9.15b

                                                                    u s = u y cos
                                                                                                      (9.22)
                                                                    u n = u y sin

                                          Notingthattheblockmovesawayfromthesurroundingrockduringjointrelaxation,
                                        increments of surface force are related to displacement increments by

                                                             N 0 − N = K n u n = K n u y sin
                                                                                                      (9.23)
                                                              S − S 0 = K s u s = K s u y cos

                                        Also, the equation of static equilibrium of the prism for the x direction requires
                                                                H = N cos   + S sin                   (9.24)

                                        Substitution of N 0 , S 0 , from equation 9.21, in equation 9.23, yields

                                                              N = H 0 cos   − K n u y sin
                                                                                                      (9.25)
                                                               S = H 0 sin   + K s u y cos

                                        Since the problem being considered involves the limiting equilibrium state of the
                                        prism, introduction of the limiting friction defined by equation 9.18 in equation 9.25
                                        yields

                                                    H 0 sin   + K s u y cos   = (H 0 cos   − K n u y sin  ) tan

                                        Simple trigonometric substitutions and rearrangement of this expression produce

                                                     H 0 sin(  −  ) = u y (K s cos   cos   + K n sin   sin  )

                                        or
                                                                      H 0 sin(  −  )
                                                          u y =
                                                               (K s cos   cos   + K n sin   sin  )
                                        Inserting this expression for u y in equation 9.25 gives

                                                                         K n sin   sin(  −  )

                                                     N = H 0 cos   −
                                                                    K s cos   cos   + K n sin   sin

                                                                        K n cos   sin(  −  )
                                                     S = H 0 sin   −
                                                                    K s cos   cos   + K n sin   sin

                                        258
   271   272   273   274   275   276   277   278   279   280   281