Page 203 - Schaum's Outline of Differential Equations
P. 203

186             NUMERICAL  METHODS  FOR  SOLVING DIFFERENTIAL  EQUATIONS        [CHAP.  19



                                                 Table 19-6

                              Method:   ADAMS-BASHFORTH-MOULTON METHOD

                              Problem:  y' = y-x; y(0) = 2
                                              h = 0.1
                               x n
                                                                True solution
                                        py n          y n      Y(x)  =  (f  + x  + 1
                              0.0        —         2.0000000      2.0000000

                              0.1        —         2.2051708      2.2051709
                              0.2        —         2.4214026      2.4214028

                              0.3        —         2.6498585      2.6498588
                              0.4     2.8918201    2.8918245      2.8918247

                              0.5     3.1487164   3.1487213       3.1487213
                              0.6     3.4221137   3.4221191       3.4221188

                              0.7     3.7137473   3.7137533       3.7137527
                              0.8     4.0255352   4.0255418       4.0255409

                              0.9     4.3595971   4.3596044       4.3596031
                               1.0    4.7182756   4.7182836       4.7182818




                                                               1
         19.8.  Use  the Adams-Bashforth-Moulton  method  to  solve y' = y  + 1;  y(0)  = 0,  on  the  interval  [0,  1] with
               h = 0.l.
                             2
                  Here f(x,  y) = y  + 1, x 0 = 0,  and  y 0  = 0. Using Table  19-5, we  find  the  three  additional  starting values  to  be
                                           = 0.3093360. Thus,
              y 1 = 0.1003346, y 2 = 0.2027099, and y 3








              Then, using Eqs. (19.6), beginning with n = 3, and Eq. (19.3),  we  compute
   198   199   200   201   202   203   204   205   206   207   208