Page 379 - Schaum's Outline of Differential Equations
P. 379

362                       ANSWERS TO SUPPLEMENTARY   PROBLEMS





         19.20.   Method:  RUNGE-KUTTA    METHOD

                  Proble

                          h = 0.2      True solution
                  x n
                            y n      Y(x)  = x^9 + \nx 2
                  1.0    3.0000000      3.0000000

                  1.2    3.6722028      3.6722045
                  1.4    4.3541872      4.3541901

                  1.6    5.0444406      5.0444443
                  1.8    5.7418469      5.7418514

                  2.0    6.4455497      6.4455549





                                      4
         19.21.  Since the true solution  Y(x)  =x - 10 is a fourth-degree polynomial, the Runge-Kutta  method,  which  is a  fourth-
               order  numerical method,  generates  an exact  solution.






         19.22.   Method:  RUNGE-KUTTA    METHOD

                                4
                  Problem:  / = 5x ; y(0) = 0
                          ft = 0.1     True solution
                  x n                         5
                            y n         Y(x)  = x
                  0.0    0.0000000      0.0000000

                  0.1    0.0000104      0.0000100
                  0.2    0.0003208      0.0003200

                  0.3    0.0024313      0.0024300
                  0.4    0.0102417      0.0102400

                  0.5    0.0312521      0.0312500
                  0.6    0.0777625      0.0777600

                  0.7    0.1680729      0.1680700
                  0.8    0.3276833      0.3276800

                  0.9    0.5904938      0.5904900
                  1.0    1.0000042      1.0000000
   374   375   376   377   378   379   380   381   382   383   384