Page 379 - Schaum's Outline of Differential Equations
P. 379
362 ANSWERS TO SUPPLEMENTARY PROBLEMS
19.20. Method: RUNGE-KUTTA METHOD
Proble
h = 0.2 True solution
x n
y n Y(x) = x^9 + \nx 2
1.0 3.0000000 3.0000000
1.2 3.6722028 3.6722045
1.4 4.3541872 4.3541901
1.6 5.0444406 5.0444443
1.8 5.7418469 5.7418514
2.0 6.4455497 6.4455549
4
19.21. Since the true solution Y(x) =x - 10 is a fourth-degree polynomial, the Runge-Kutta method, which is a fourth-
order numerical method, generates an exact solution.
19.22. Method: RUNGE-KUTTA METHOD
4
Problem: / = 5x ; y(0) = 0
ft = 0.1 True solution
x n 5
y n Y(x) = x
0.0 0.0000000 0.0000000
0.1 0.0000104 0.0000100
0.2 0.0003208 0.0003200
0.3 0.0024313 0.0024300
0.4 0.0102417 0.0102400
0.5 0.0312521 0.0312500
0.6 0.0777625 0.0777600
0.7 0.1680729 0.1680700
0.8 0.3276833 0.3276800
0.9 0.5904938 0.5904900
1.0 1.0000042 1.0000000

