Page 384 - Schaum's Outline of Differential Equations
P. 384

ANSWERS TO SUPPLEMENTARY PROBLEMS                          367




         20.21.         Method:  RUNGE-KUTTA METHOD

                        Problem:  /' + y = 0; y(0) = 1 , /(O) = 0
                                 ft = 0.1
                  x n
                                                    True solution
                            y n          •^n         Y(x)  = cos x
                                          •7
                  0.0    1.0000000    0.0000000       1.0000000

                  0.1    0.9950042   -0.0998333      0.9950042
                  0.2    0.9800666   -0.1986692      0.9800666

                  0.3    0.9553365   -0.2955200      0.9553365
                  0.4    0.9210611   -0.3894180      0.9210610

                  0.5    0.8775827   -0.4794252      0.8775826
                  0.6    0.8253359   -0.5646420      0.8253356

                  0.7    0.7648425   -0.6442172      0.7648422
                  0.8    0.6967071   -0.7173556      0.6967067

                  0.9    0.6216105   -0.7833264      0.6216100
                  1.0    0.5403030   -0.8414705      0.5403023

         20.22.  Since the true solution is  Y(x)  = -x,  a first-degree polynomial, the Runge-Kutta method is exact and generates the
               true solutiionyn=-xm ateachxn

         20.23.             Method:   ADAMS-BASHFORTH-MOULTON METHOD

                            Problem:  y" -  3y' + 2y = 0; y(0) = -1 , /(O) = 0
                                              h = 0.l
                  x n
                                                                              True solution
                            py n         PZ n         y n          •^n        Y(x)  = e - 2e x
                                                                                    2x
                                                                    •7
                  0.0       —            —        -1.0000000   0.0000000     -1.0000000
                  0.1       —            —        -0.9889417   0.2324583     -0.9889391
                  0.2       —            —        -0.9509872   0.5408308     -0.9509808

                  0.3       —            —        -0.8776105   0.9444959     -0.8775988
                  0.4   -0.7582805    1.4670793   -0.7581212    1.4674067    -0.7581085

                  0.5   -0.5793682    2.1386965   -0.5791739   2.1390948     -0.5791607
                  0.6   -0.3243735    2.9954802   -0.3241340   2.9959702     -0.3241207

                  0.7    0.0273883    4.0822712    0.0276819   4.0828703       0.0276946
                  0.8    0.5015797    5.4542298    0.5019396   5.4549628       0.5019506

                  0.9    1.1299923    7.1791788    1.1304334   7.1800757       1.1304412
                  1.0    1.9519493    9.3404498    1.9524898   9.3415469       1.9524924
   379   380   381   382   383   384   385   386   387   388   389