Page 385 - Schaum's Outline of Differential Equations
P. 385

368                       ANSWERS TO SUPPLEMENTARY PROBLEMS





         20.24.             Method:   ADAMS-BASHFORTH-MOULTON       METHOD

                            Problem:  /' + y = 0; y(0) = 1 , /(O) = 0
                                              ft = 0.1
                  x n
                                                                              True  solution
                            py n         PZ n         y n          •^n         Y(x)  = cos  x
                                                                    •7
                  0.0       —            —         1.0000000   0.0000000       1.0000000

                  0.1       —            —         0.9950042  -0.0998333       0.9950042
                  0.2       —            —         0.9800666  -0.1986692       0.9800666
                  0.3       —            —         0.9553365  -0.2955200       0.9553365

                  0.4    0.9210617   -0.3894147    0.9210611  -0.3894184       0.9210610

                  0.5    0.8775837   -0.4794223    0.8775827  -0.4794259       0.8775826
                  0.6    0.8253371   -0.5646396    0.8253357  -0.5646431       0.8253356
                  0.7    0.7648439   -0.6442153    0.7648422  -0.6442186       0.7648422

                  0.8    0.6967086   -0.7173541    0.6967066  -0.7173573       0.6967067

                  0.9    0.6216119   -0.7833254    0.6216096  -0.7833284       0.6216100
                  1.0    0.5403043   -0.8414700    0.5403017  -0.8414727       0.5403023


         20.25.  Since the true solution is  Y(x)  = —x, a first-degree polynomial, the Adams-Bashforth-Moulton  method is exact and
               generates the true solution y n=-x n  at each x n.

         20.26.                  Method:   MILNE'S METHOD
                                 Problem:  y" -3y' + 2y = 0; y(0)  = -1 , /(O) = 0

                                              h = 0.l
                  x n
                                                                              True  solution
                            py n         PZ n         y n          •^n        Y(x)  = e - 2e x
                                                                                    2x
                                                                    •7
                  0.0       —            —        -1.0000000   0.0000000     -1.0000000
                  0.1       —            —        -0.9889417   0.2324583     -0.9889391

                  0.2       —            —        -0.9509872   0.5408308     -0.9509808
                  0.3       —            —        -0.8776105   0.9444959     -0.8775988

                  0.4   -0.7582563    1.4671290   -0.7581224    1.4674042    -0.7581085
                  0.5   -0.5793451    2.1387436   -0.5791820   2.1390779     -0.5791607

                  0.6   -0.3243547    2.9955182   -0.3241479   2.9959412     -0.3241207
                  0.7    0.0274045    4.0823034    0.0276562   4.0828171       0.0276946

                  0.8    0.5015908    5.4542513    0.5019008   5.4548828       0.5019506
                  0.9    1.1299955    7.1791838    1.1303739   7.1799534       1.1304412

                  1.0    1.9519398    9.3404286    1.9524049   9.3413729       1.9524924
   380   381   382   383   384   385   386   387   388   389   390