Page 137 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 137

128                            PARTIAL DERIVATIVES                         [CHAP. 6



                              Since the limit of the function depends on the manner of approach to ð0; 0Þ (i.e., the slope m of the line),
                          the function cannot be continuous at ð0; 0Þ.
                          Another method:
                                     (    2   2 )     2         (    2   2  )
                                         x   y       x              x   y
                              Since lim lim     ¼ lim  ¼ 1 and lim lim     ¼ 1are not equal, lim f ðx; yÞ
                                          2
                                                                     2
                                  x!0  y!0 x þ y 2  x!0 x 2   y¼0  x!0 x þ y 2             x!0
                                                                                           y!0
                          cannot exist.  Hence, f ðx; yÞ cannot be continuous at ð0; 0Þ.
                     PARTIAL DERIVATIVES
                                              2
                                      2
                      6.8. If f ðx; yÞ¼ 2x   xy þ y , find (a) @f =@x, and (b) @f =@y at ðx 0 ; y 0 Þ directly from the definition.

                              @f                  f ðx 0 þ h; y 0 Þ  f ðx 0 ; y 0 Þ
                                     ¼ f x ðx 0 ; y 0 Þ¼ lim

                          ðaÞ
                              @x               h!0        h
                                 ðx 0 :y 0 Þ
                                                2            2     2       2
                                     ¼ lim  ½2ðx 0 þ hÞ  ðx 0 þ hÞy 0 þ y 0 м½2x 0   x 0 y 0 þ y 0 Š
                                       h!0                 h
                                                2
                                          4hx 0 þ 2h   hy 0
                                     ¼ lim            ¼ lim ð4x 0 þ 2h   y 0 Þ¼ 4x 0   y 0
                                       h!0     h        h!0

                              @f                  f ðx 0 ; y 0 þ kÞ  f ðx 0 ; y 0 Þ
                                     ¼ f y ðx 0 ; y 0 Þ¼ lim
                          ðbÞ
                              @y               k!0        k
                                 ðx 0 ;y 0 Þ
                                            2                2     2       2
                                     ¼ lim  ½2x 0   x 0 ðy 0 þ kÞþð y 0 þ kÞ Š ½2x 0   x 0 y 0 þ y 0 Š
                                      k!0                  k
                                           kx 0 þ 2ky 0 þ k 2
                                     ¼ lim             ¼ lim ð x 0 þ 2y 0 þ kÞ¼  x 0 þ 2y 0
                                      k!0      k        k!0
                                 Since the limits exist for all points ðx 0 ; y 0 Þ,wecan write f x ðx; yÞ¼ f x ¼ 4x   y, f y ðx; yÞ¼ f y ¼
                               x þ 2y which are themselves functions of x and y.
                                 Note that formally f x ðx 0 ; y 0 Þ is obtained from f ðx; yÞ by differentiating with respect to x,keeping y
                              constant and then putting x ¼ x 0 ; y ¼ y 0 .  Similarly, f y ðx 0 ; y 0 Þ is obtained by differentiating f with
                              respect to y,keeping x constant.  This procedure, while often lucrative in practice, need not always
                              yield correct results (see Problem 6.9). It will work if the partial derivatives are continuous.

                                           2   2
                                                             : Prove that (a) f x ð0; 0Þ and f y ð0; 0Þ both exist but
                                       xy=ðx þ y Þðx; yÞ 6¼ð0; 0Þ
                      6.9. Let f ðx; yÞ¼
                                       0          otherwise
                          that  (b) f ðx; yÞ is discontinuous at ð0; 0Þ.
                                                        0
                              f x ð0; 0Þ¼ lim  f ðh; 0Þ  f ð0; 0Þ  ¼ lim  ¼ 0
                          ðaÞ
                                     h!0     h       h!0 h
                                                        0
                              f y ð0; 0Þ¼ lim  f ð0; 0Þ  f ð0; 0Þ  ¼ lim  ¼ 0
                                     k!0     k       k!0 k
                                                                                           mx 2     m
                          (b)Let ðx; yÞ! ð0; 0Þ along the line y ¼ mx in the xy plane. Then lim f ðx; yÞ¼ lim  ¼
                                                                                              2 2
                                                                                          2
                                                                             x!0      x!0 x þ m x  1 þ m 2
                                                                             y!0
                              so that the limit depends on m and hence on the approach and therefore does not exist. Hence, f ðx; yÞ
                              is not continuous at ð0; 0Þ:
                                 Note that unlike the situation for functions of one variable, the existence of the first partial
                              derivatives at a point does not imply continuity at the point.
                                                                  2
                                                                           3
                                                              2
                                                             y   x y      x   xy 2
                                                                                 and f x ð0; 0Þ, f y ð0; 0Þ cannot be
                                 Note also that if ðx; yÞ 6¼ð0; 0Þ, f x ¼  2 2 , f y ¼  2 2
                                                              2            2
                                                             ðx þ y Þ    ðx þ y Þ
                              computed from them by merely letting x ¼ 0 and y ¼ 0.  See remark at the end of Problem 4.5(b)
                              Chapter 4.
                                     3    xy 2
                     6.10. If  ðx; yÞ¼ x y þ e  , find  (a)   x ;  ðbÞ   y ;  ðcÞ   xx ;  ðdÞ   yy ;  ðeÞ   xy ;  ð f Þ   yx .
   132   133   134   135   136   137   138   139   140   141   142