Page 140 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 140

CHAP. 6]                       PARTIAL DERIVATIVES                              131


                           Solution:
                           ðaÞ   z ¼ f ðx þ  x; y þ  yÞ  f ðx; yÞ
                                         2                    2
                                 ¼fðx þ  xÞ ð y þ  yÞ  3ð y þ  yÞg   fx y   3yg
                                           2
                                                                      2
                                                       2
                                 ¼ 2xy  x þðx   3Þ y þð xÞ y þ 2x  x  y þð xÞ  y
                                   |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}  |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
                                         ðAÞ                  ðBÞ
                              The sum (A)is the principal part of  z and is the differential of z, i.e., dz.  Thus,
                                           2
                                                           2
                              dz ¼ 2xy  x þðx   3Þ y ¼ 2xy dx þðx   3Þ dy
                           ðbÞ
                                               @z    @z
                                                                   2
                              Another method:  dz ¼  dx þ  dy ¼ 2xy dx þðx   3Þ dy
                                               @x    @y
                           ðcÞ   z ¼ f ðx þ  x; y þ  yÞ  f ðx; yÞ¼ f ð4   0:01; 3 þ 0:02Þ  f ð4; 3Þ
                                                        2
                                       2
                                 ¼fð3:99Þ ð3:02Þ  3ð3:02Þg   fð4Þ ð3Þ  3ð3Þg ¼ 0:018702
                                           2                    3
                               dz ¼ 2xy dx þðx   3Þ dy ¼ 2ð4Þð3Þð 0:01Þþð4   3Þð0:02Þ¼ 0:02
                                  Note that in this case  z and dz are approximately equal, because  x ¼ dx and  y ¼ dy are
                              sufficiently small.
                           (d)We must find f ðx þ  x; y þ  yÞ when x þ  x ¼ 5:12 and y ¼  y ¼ 6:85. We can accomplish this by
                              choosing x ¼ 5,  x ¼ 0:12, y ¼ 7,  y ¼ 0:15.  Since  x and  y are small, we use the fact that
                              f ðx þ  x; y þ  yÞ¼ f ðx; yÞþ  z is approximately equal to f ðx; yÞþ dz, i.e., z þ dz.
                                                          2
                                 Now    z ¼ f ðx; yÞ¼ f ð5; 7Þ¼ ð5Þ ð7Þ  3ð7Þ¼ 154
                                                   2
                                                                        2
                                       dz ¼ 2xy dx þðx   3Þ dy ¼ 2ð5Þð7Þð0:12Þþð5   3Þð 0:15Þ¼ 5:1:
                                  Then the required value is 154 þ 5:1 ¼ 159:1 approximately. The value obtained by direct com-
                              putation is 159.01864.


                                                                      2
                                                                            2
                                                                                    3
                                                                                              2
                                      2 y=x
                     6.16. (a) Let U ¼ x e  .  Find dU.  (b) Show that ð3x y   2y Þ dx þðx   4xy þ 6y Þ dy can be
                           written as an exact differential of a function  ðx; yÞ and find this function.
                           (a) Method 1:

                                               @U   2 y=x  y      y=x   @U   2 y=x 1
                                                 ¼ x e       þ 2xe  ;     ¼ x e
                                               @x          x 2          @y       x
                                                  @U     @U
                              Then            dU ¼   dx þ  dy ¼ð2xe  y=x    ye  y=x Þ dx þ xe  y=x  dy
                                                  @x     @y
                              Method 2:
                                                          2
                                                              2 y=x
                                             2
                                        dU ¼ x dðe y=x Þþ e y=x dðx Þ¼ x e  dðy=xÞþ 2xe y=x  dx

                                             2 y=x xdy   ydx    y=x      y=x  y=x     y=x
                                          ¼ x e            þ 2xe  dx ¼ð2xe    ye  Þ dx þ xe  dy
                                                     x 2
                           (b) Method 1:
                                                                            @     @
                                                                  2
                                                  2
                                                         3
                                             2
                              Suppose that  ð3x y   2y Þ dx þðx   4xy þ 6y Þ dy ¼ d  ¼  dx þ  dy:
                                                                            @x    @y
                                                  @     2    2       @    3        2
                              Then             (1)   ¼ 3x y   2y ;  (2)  ¼ x   4xy þ 6y
                                                  @x                 @y
                                  From (1), integrating with respect to x keeping y constant, we have
                                                             3     2
                                                           ¼ x y ¼ 2xy þ FðyÞ
   135   136   137   138   139   140   141   142   143   144   145