Page 145 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 145

136                            PARTIAL DERIVATIVES                         [CHAP. 6


                                                     dF ¼ F x dx þ F y dy þ F u du þ F v dv ¼ 0
                                                ð1Þ
                                                     dG ¼ G x dx þ G y dy þ G u du þ G v dv ¼ 0
                                                ð2Þ
                          Also, since u and v are functions of x and y,
                                              ð3Þ du ¼ u x dx þ u y dy  ð4Þ  dv ¼ v x dx þ v y dy:

                          Substituting (3) and (4)in (1) and (2)yields
                                              dF ¼ðF x þ F u u x þ F v v x Þ dx þðF y þ F u u y þ F v v y Þ dy ¼ 0
                                          ð5Þ
                                              dG ¼ðG x þ G u u x þ G v v x Þ dx þðG y þ G u u y þ G v v y Þ dy ¼ 0
                                          ð6Þ
                              Since x and y are independent, the coefficients of dx and dy in (5) and (6)are zero. Hence we obtain

                                                F u u x þ F v v x ¼ F x  F u u y þ F v v y ¼ F y
                                           ð7Þ                     ð8Þ
                                                G u u x þ G v v x ¼ G x  G u u y þ G v v y ¼ G y
                          Solving (7) and (8)gives

                                          F x  F v                       F u   F x
                                                  @ðF; GÞ                         @ðF; GÞ

                                  @u      G x  G v                @v     G u   G x
                                                  @ðx; vÞ                         @ðu; xÞ
                                  @x     F u  F v     @ðF; GÞ     @x      F u  F v     @ðF; GÞ
                          ðaÞ  u x ¼  ¼        ¼           ðbÞ  v x ¼  ¼       ¼


                                       G u  G v   @ðu; vÞ              G u  G v   @ðu; vÞ


                                       F y                            F u
                                           F v                             F y
                                                  @ðF; GÞ                         @ðF; GÞ

                                  @u      G y  G v     @ðy; vÞ    @v     G u   G y     @ðu; yÞ
                          ðcÞ  u y ¼  ¼        ¼          ðdÞ  v y ¼  ¼        ¼
                                  @y     F u  F v     @ðF; GÞ     @y     F u  F v     @ðF; GÞ


                                       G u  G v   @ðu; vÞ              G u  G v   @ðu; vÞ

                                                                            F; G
                                                     F u          @ðF; GÞ
                              The functional determinant     F v   ,denoted by  or J  ,isthe Jacobian of F and G with
                                                                            u; v
                                                   G u  G v
                                                                   @ðu; vÞ
                          respect to u and v and is supposed 6¼ 0.
                              Note that it is possible to devise mnemonic rules for writing at once the required partial derivatives in
                          terms of Jacobians (see also Problem 6.33).
                                                  2
                             2
                     6.32. If u   v ¼ 3x þ y and u   2v ¼ x   2y, find (a) @u=@x;  ðbÞ @v=@x;  ðcÞ @u=@y;  ðdÞ @v=@y.
                          Method 1: Differentiate the given equations with respect to x,considering u and v as functions of x and y.
                          Then
                                                       @u  @v         @u    @v
                                                     2u     ¼ 3           4v  ¼ 1
                                                       @x  @x         @x    @x
                                                 ð1Þ              ð2Þ
                                  @u  1   12v  @v  2u   3
                          Solving,  ¼       ;   ¼       :
                                  @x  1   8uv  @x  1   8uv
                              Differentiating with respect to y,we have
                                                      @u  @v          @u   @v
                                                    2u      ¼ 1           4v  ¼ 2
                                                      @y  @y          @y   @y
                                                 ð3Þ              ð4Þ
                                  @u   2   4v  @v   4u   1
                          Solving,  ¼       ;    ¼      :
                                  @y  1   8uv  @y  1   8uv
                              We have, of course, assumed that 1   8uv 6¼ 0.
                                                                               2
                                                         2
                          Method 2: The given equations are F ¼ u   v   3x   y ¼ 0, G ¼ u   2v   x þ 2y ¼ 0. Then by Problem
                          6.31,
   140   141   142   143   144   145   146   147   148   149   150