Page 150 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 150

CHAP. 6]                       PARTIAL DERIVATIVES                              141


                                      @         @

                                        ð  cos  Þ  ð  cos  Þ
                                       @       @              cos       sin
                              @ðx; yÞ
                                       @        @
                           ðcÞ     ¼                      ¼
                                                              sin      cos
                              @ð ;  Þ
                                        ð  sin  Þ  ð  sin  Þ
                                        @       @
                                               2
                                         2
                                   ¼  ðcos   þ sin  Þ¼
                           (d)From Problem 6.43(b)we have, letting u ¼  , v ¼  ,
                                                                                    1
                                                       ¼ 1   so that, using ðcÞ;  ¼
                                             @ðx; yÞ @ð ;  Þ                 @ð ;  Þ

                                             @ð ;  Þ @ðx; yÞ                 @ðx; yÞ
                              This can also be obtained by direct differentiation.
                                  Note that from the Jacobians of these transformations it is clear why   ¼ 0 (i.e., x ¼ 0, y ¼ 0) is a
                              singular point.
                     MEAN VALUE THEOREMS
                     6.40. Prove the mean value theorem for functions of two variables.
                              Let f ðtÞ¼ f ðx 0 þ ht; y 0 þ ktÞ.  By the mean value theorem for functions of one variable,
                                                                 0    0 <  < 1
                                                     Fð1Þ¼ Fð0Þ¼ F ð Þ                                ð1Þ
                              If x ¼ x 0 þ ht, y ¼ y 0 þ kt,then FðtÞ¼ f ðx; yÞ,sothat by Problem 6.17,
                              0                                  0
                             F ðtÞ¼ f x ðdx=dtÞþ f y ðdy=dtÞ¼ hf x þ kf y  and F ð Þ¼ hf x ðx 0 þ  h; y 0 þ  kÞþ kf y ðx 0 þ  h; y 0 þ  kÞ
                           where 0 <  < 1.  Thus, (1)becomes
                                      f ðx 0 þ h; y 0 þ kÞ  f ðx 0 ; y 0 Þ¼ hf x ðx 0 þ  h; y 0 þ  kÞþ kf y ðx 0 þ  h; y 0 þ  kÞ  ð2Þ
                           where 0 <  < 1as required.
                              Note that (2), which is analogous to (1)ofProblem 6.14 where h ¼  x, has the advantage of being
                           more symmetric (and also more useful), since only a single number   is involved.




                     MISCELLANEOUS PROBLEMS
                                     8          !
                                           2   2
                                          x   y
                                     >
                                       xy          ðx; yÞ 6¼ð0; 0Þ
                                     <
                                           2
                                          x þ y 2             .
                     6.41. Let f ðx; yÞ¼
                                     >
                                       0           ðx; yÞ¼ ð0; 0Þ
                                     :
                           Compute (a) f x ð0; 0Þ;  ðbÞ f y ð0; 0Þ;  ðcÞ f xx ð0; 0Þ;  ðdÞ f yy ð0; 0Þ;  ðeÞ f xy ð0; 0Þ; ð f Þ f yx ð0; 0Þ:
                                                        0
                              f x ð0; 0Þ¼ lim  f ðh; 0Þ  f ð0; 0Þ  ¼ lim  ¼ 0
                           ðaÞ
                                     h!0     h       h!0 h
                                                         0
                              f y ð0; 0Þ¼ lim  f ð0; kÞ  f ð0; 0Þ  ¼ lim  ¼ 0
                           ðbÞ
                                     h!0     k       k!0 k
                              If ðx; yÞ 6¼ð0; 0Þ,
                                                    (        !)             !         !
                                                         2
                                                                                  2
                                                   @    x   y 2        4xy 2     x   y 2
                                                     xy         ¼ xy         þ y
                                                  @x    x þ y        ðx þ y Þ    x þ y
                                           f x ðx; yÞ¼   2   2        2   2 2     2  2
                                                    (        !)             !         !
                                                                                  2
                                                         2
                                                   @    x   y 2        4xy 2     x   y 2
                                                     xy         ¼ xy         þ x
                                           f y ðx; yÞ¼   2   2            2 2     2  2
                                                  @y    x þ y         2          x þ y
                                                                     ðx þ y Þ
   145   146   147   148   149   150   151   152   153   154   155