Page 153 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 153

144                            PARTIAL DERIVATIVES                         [CHAP. 6


                                                Supplementary Problems


                     FUNCTIONS AND GRAPHS
                                   2x þ y
                     6.45.  If f ðx; yÞ¼  , find  (a) f ð1;  3Þ;  ðbÞ  f ð2 þ h; 3Þ  f ð2; 3Þ ;  ðcÞ f ðx þ y; xyÞ.
                                   1   xy                         h
                                             11        2x þ 2y þ xy
                                    1
                          Ans. ðaÞ  ;            ;
                                                           2
                                    4   ðbÞ         ðcÞ  1   x y   xy 2
                                           5ð3h þ 5Þ
                                                                               2
                                     2
                     6.46.  If gðx; y; zÞ¼ x   yz þ 3xy, find  (a) gð1;  2; 2Þ;  ðbÞ gðx þ 1; y   1; z Þ;  ðcÞ gðxy; xz; x þ yÞ.
                                                     2
                                                                             2
                                                                        2 2
                                                         2
                                                                                       2
                                           2
                          Ans. ðaÞ  1;  ðbÞ x   x   2   yz þ z þ 3xy þ 3y;  ðcÞ x y   x z   xyz þ 3x yz
                     6.47.  Give the domain of definition for which each of the following functional rules are defined and real, and
                          indicate this domain graphically.
                                        1                                     1 2x   y

                                             ;  ðbÞ f ðx; yÞ¼ lnðx þ yÞ;  ðcÞ f ðx; yÞ¼ sin  :
                                     x þ y   1                                   x þ y
                          ðaÞ  f ðx; yÞ¼  2  2

                                       2
                                   2
                          Ans:  ðaÞ x þ y 6¼ 1;  ðbÞ x þ y > 0;  ðcÞ      2x   y      @ 1
                                                               x þ y
                                                                     s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                       x þ y þ z   1
                     6.48.  (a) What is the domain of definition for which f ðx; y; zÞ¼  2  2  2  is defined and real? (b)Indi-
                          cate this domain graphically.               x þ y þ z   1
                                              2
                                                 2
                                                                                2
                                                                             2
                                                     2
                                                                         2
                          Ans.(a) x þ y þ z @ 1; x þ y þ z < 1 and x þ y þ z A 1; x þ y þ z > 1
                     6.49.  Sketch and name the surface in three-dimensional space represented by each of the following.
                                                                              2
                                                                           2
                                                       2
                                                           2
                                                   2
                              3x þ 2z ¼ 12;        x þ z ¼ y ;            x þ y ¼ 2y;
                          ðaÞ                  ðdÞ                    ðgÞ
                                   2
                                                       2
                                                   2
                                                          2
                                      2
                              4z ¼ x þ y ;         x þ y þ z ¼ 16;        z ¼ x þ y;
                          ðbÞ                  ðeÞ                    ðhÞ
                                                        2
                                                   2
                                                            2
                                  2
                                      2
                                                                           2
                              z ¼ x   4y ;         x   4y   4z ¼ 36;      y ¼ 4z;
                          ðcÞ                  ð f Þ                   ðiÞ
                                                                                  2
                                                                           2
                                                                              2
                                                                          x þ y þ z   4x þ 6y þ 2z   2 ¼ 0:
                                                                      ð jÞ
                          Ans. ðaÞ plane, (b) paraboloid of revolution, (c) hyperbolic paraboloid, (d) right circular cone,
                          (e)sphere, ( f ) hyperboloid of two sheets, (g) right circular cylinder, (h)plane, (i) parabolic cylinder,
                          ( j)sphere, center at ð2;  3;  1Þ and radius 4.
                                                                            2
                                                                   2
                                                                                2
                                                                         2
                                                            2
                                                                2
                     6.50.  Construct a graph of the region bounded by x þ y ¼ a and x þ z ¼ a , where a is a constant.
                     6.51.  Describe graphically the set of points ðx; y; zÞ such that:
                                                            2
                                              2
                                     2
                              2
                                  2
                                           2
                                                         2
                                                  2
                          (a) x þ y þ z ¼ 1; x þ y ¼ z ;  ðbÞ x þ y < z < x þ y.
                     52.  The level curves for a function z ¼ f ðx; yÞ are curves in the xy plane defined by f ðx; yÞ¼ c, where c is any
                          constant.  They provide a way of representing the function graphically.  Similarly, the level surfaces of
                          w ¼ f ðx; y; zÞ are the surfaces in a rectangular ðxyz)coordinate system defined by f ðx; y; zÞ¼ c, where c is
                          any constant.  Describe and graph the level curves and surfaces for each of the following functions:
                                          2
                                       2
                          (a) f ðx; yÞ¼ lnðx þ y   1Þ;  ðbÞ f ðx; yÞ¼ 4xy;  ðcÞ f ðx; yÞ¼ tan  1  y=ðx þ 1Þ;  ðdÞ f ðx; yÞ¼ x 2=3  þ
                                                     2
                                                2
                                            2
                          y 2=3 ;  ðeÞ f ðx; y; zÞ¼ x þ 4y þ 16z ;  ð f Þ sinðx þ zÞ=ð1   yÞ:
                     LIMITS AND CONTINUITY
                     6.53.  Prove that  (a) lim ð3x   2yÞ¼ 14 and  (b)  lim  ðxy   3x þ 4Þ¼ 0byusing the definition.
                                       x!4
                                      y! 1                 ðx;yÞ!ð2;1Þ
                     6.54.  If lim f ðx; yÞ¼ A and lim gðx; yÞ¼ B, where lim denotes limit as ðx; yÞ! ðx 0 ; y 0 Þ,prove that:
                          (a) lim f f ðx; yÞþ gðx; yÞg ¼ A þ B;  ðbÞ lim f f ðx; yÞ gðx; yÞg ¼ AB.
                     6.55.  Under what conditions is the limit of the quotient of two functions equal to the quotient of their limits?
                          Prove your answer.
   148   149   150   151   152   153   154   155   156   157   158