Page 157 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 157

148                            PARTIAL DERIVATIVES                         [CHAP. 6



                     6.97.  (a)Prove that under a linear transformation x ¼ a 1 u þ a 2 v, y ¼ b 1 u þ b 2 v (a 1 b 2   a 2 b 1 6¼ 0Þ lines and circles
                          in the xy plane are mapped respectively into lines and circles in the uv plane. (b) Compute the Jacobian J of
                          the transformation and discuss the significance of J ¼ 0.

                     6.98.  Given x ¼ cos u cosh v, y ¼ sin u sinh v.(a) Show that in general the coordinate curves u ¼ a and v ¼ b in

                                                                                                   @ðx; yÞ
                          the uv plane are mapped into hyperbolas and ellipses, respectively, in the xy plane. (b) Compute       .


                                                                                                  @ðu; vÞ
                                       @ðu; vÞ
                          (c) Compute       .

                                     @ðx; yÞ
                                                                         2
                                                                   2
                                    2
                                                                              2
                                                    2
                                               2
                                                              2
                                         2
                          Ans.(b) sin u cosh v þ cos u sinh v;  ðcÞðsin u cosh v þ cos u sinh vÞ  1
                     6.99.  Given the transformation x ¼ 2u þ 3v   w, y ¼ 2v þ w, z ¼ 2u   2v þ w.  (a) Sketch the region r of the
                                                                                                  0
                          uvw space into which the region r of the xyz space bounded by x ¼ 0; x ¼ 8; y ¼ 0; y ¼ 4; z ¼ 0; z ¼ 6is
                          mapped. (b) Compute  @ðx; y; zÞ .(c) Compare the result of (b)with the ratios of the volumes of r and r . 0
                                            @ðu; v; wÞ
                          Ans.(b)1
                     6.100. Given the spherical coordinate transformation x ¼ r sin   cos  , y ¼ r sin   sin  , z ¼ r cos  , where r A 0,
                          0 @   @  ,0 @  < 2 .  Describe the coordinate surfaces  (a) r ¼ a;  ðbÞ   ¼ b, and  (c)   ¼ c,
                          where a; b; c are any constants. Ans.  (a)spheres,  (b)cones, (c)planes
                                                                                                ¼ r sin  .
                                                                                          @ðx; y; zÞ  2
                     6.101. (a)Verify that for the spherical coordinate transformation of Problem 6.100, J ¼
                          (b)Discuss the case where J ¼ 0.                                @ðr; ; Þ
                     MISCELLANEOUS PROBLEMS

                                                    @P   @T    @P        @P   @T   @V
                     6.102. If FðP; V; TÞ¼ 0, prove that  (a)           ;             ¼ 1.
                                                    @T     @V    ¼  @V     ðbÞ  @T     @V     @P
                                                       V   P      T         V   P   T
                          These results are useful in thermodynamics, where P; V; T correspond to pressure, volume, and temperature
                          of a physical system.
                     6.103. Show that Fðx=y; z=yÞ¼ 0satisfies xð@z=@xÞþ yð@z=@yÞ¼ z.
                                            2
                                                2
                     6.104. Show that Fðx þ y   z; x þ y Þ¼ 0satisfies xð@z=@yÞ  yð@z=@xÞ¼ x   y.
                                                        @v    1 @y
                     6.105. If x ¼ f ðu; vÞ and y ¼ gðu; vÞ,prove that  ¼   where J ¼  @ðx; yÞ .
                                                        @x   J @u         @ðu; vÞ
                     6.106. If x ¼ f ðu; vÞ, y ¼ gðu; vÞ, z ¼ hðu; vÞ and Fðx; y; zÞ¼ 0, prove that
                                                                          dz ¼ 0
                                                   @ðy; zÞ  @ðz; xÞ  @ðx; yÞ
                                                        dx þ     dy þ
                                                   @ðu; vÞ  @ðu; vÞ  @ðu; vÞ
                     6.107. If x ¼  ðu; v; wÞ, y ¼  ðu; v; wÞ and u ¼ f ðr; sÞ, v ¼ gðr; sÞ, w ¼ hðr; sÞ,prove that
                                             @ðx; yÞ  @ðx; yÞ @ðu; vÞ  @ðx; yÞ @ðv; wÞ  @ðx; yÞ @ðw; uÞ
                                                  ¼          þ           þ
                                             @ðr; sÞ  @ðu; vÞ @ðr; sÞ  @ðv; wÞ @ðr; sÞ  @ðw; uÞ @ðr; sÞ

                                        a  b       e  f        ae þ bg af þ bh
                     6.108. (a)Prove that                          ,thus establishing the rule for the product of two

                                         c  d       gh     ¼     ce þ dg  cf þ dh
                          second order determinants referred to in Problem 6.43.  (b)Generalize the result of ðaÞ to determinants
                          of 3; 4 .. . .
                     6.109. If x; y; and z are functions of u; v; and w, while u; v; and w are functions of r; s; and t,prove that
   152   153   154   155   156   157   158   159   160   161   162