Page 154 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 154

CHAP. 6]                       PARTIAL DERIVATIVES                              145


                     6.56.  Evaluate each of the following limits where they exist.
                                  3   x þ y               y                2  2              x þ y   1
                                                       2
                           (a)  lim             ðcÞ lim x sin     ðeÞ lim e  1=x ðy 1Þ
                               x!1 4 þ x   2y      x!4    x          x!0              ðgÞ lim p ffiffiffi  p 1   y
                                                                                                  ffiffiffiffiffiffiffiffiffiffiffi
                                                                                         x!0þ
                               y!2                 y!                y!1                 y!1   x
                                 3x   2y                   2  2         2x   y                 1
                               lim              ðdÞ lim  x sinðx þ y Þ  ð f Þ lim     ðhÞ lim  sin ðxy   2Þ
                           ðbÞ                           2   2           2   2                 1
                               x!0 2x   3y          x!0  x þ y       x!0 x þ y
                               y!0                  y!0               y!0                y!1
                                                                                         x!2 tan ð3xy   6Þ
                                                         ffiffiffi
                                                        p
                           Ans.  (a)4,  (b) does not exist, (c)8 2;  ðdÞ 0;  ðeÞ 0;  ð f Þ does not exist,  (g)0,  (h)1/3
                     6.57.  Formulate a definition of limit for functions of (a)3, (b) n variables.
                                  4x þ y   3z
                     6.58.  Does lim        as ðx; y; zÞ! ð0; 0; 0Þ exist? Justify your answer.
                                  2x   5y þ 2z
                     6.59.  Investigate the continuity of each of the following functions at the indicated points:
                                                 x                       1
                                                                   2
                                   2
                               2
                                                               2
                              x þ y ; ðx 0 ; y 0 Þ:  ; ð0; 0Þ:  ðcÞðx þ y Þ sin  if ðx; yÞ 6¼ð0; 0Þ,0 if ðx; yÞ¼ð0; 0Þ;
                           ðaÞ             ðbÞ                          2  2
                                               3x þ 5y                 x þ y
                           ð0; 0Þ:
                           Ans.  (a)continuous,  (b)discontinuous,  (c)continuous
                     6.60.  Using the definition, prove that f ðx; yÞ¼ xy þ 6x is continuous at  (a) ð1; 2Þ;  ðbÞðx 0 ; y 0 Þ.
                     6.61.  Prove that the function of Problem 6.60 is uniformly continuous in the square region defined by 0 @ x @ 1,
                           0 @ y @ 1.
                     PARTIAL DERIVATIVES
                                   x   y
                     6.62.  If f ðx; yÞ¼  , find (a) @f =@x and (b) @f =@y at ð2;  1Þ from the definition and verify your answer by
                                   x þ y
                           differentiation rules.  Ans.  (a)  2;  ðbÞ  4

                                      2
                     6.63.  If f ðx; yÞ¼  ðx   xyÞ=ðx þ yÞ  for ðx; yÞ 6¼ð0; 0Þ  , find  (a) f x ð0; 0Þ;  ðbÞ f y ð0; 0Þ.
                                    0             for ðx; yÞ¼ð0; 0Þ
                           Ans.  (a)1,  (b)0
                     6.64.  Investigate  lim  f x ðx; yÞ for the function in the preceding problem and explain why this limit (if it exists)
                                   ðx;yÞ!ð0;0Þ
                           is or is not equal to f x ð0; 0Þ:
                     6.65.  If f ðx; yÞ¼ðx   yÞ sinð3x þ 2yÞ,compute (a) f x ;  ðbÞ f y ;  ðcÞ f xx ;  ðdÞ f yy ;  ð f Þ f yx at ð0; =3Þ.
                                        ffiffiffi          p ffiffiffi      p ffiffiffi        p ffiffiffi          p ffiffiffi
                                       p
                           Ans.  (a)  1  3Þ;   1 ð2    3 3Þ;  3 ð  3   2Þ;  2 ði 3 þ 3Þ;  1  ð2  3 þ 1Þ,
                                  2  ð  þ   ðbÞ  6         ðcÞ  2       ðdÞ  3       ðeÞ  2
                           ( f )  1  p ffiffiffi
                              2  ð2  3 þ 1Þ
                     6.66.  (a)Prove by direct differentiation that z ¼ xy tanðy=xÞ satisfies the equation xð@z=@xÞþ yð@z=@yÞ¼ 2z if
                           ðx; yÞ 6¼ð0; 0Þ.  (b)Discuss part (a)for all other points ðx; yÞ assuming z ¼ 0at ð0; 0Þ.
                     6.67.  Verify that f xy ¼ f yx for the functions (a) ð2x   yÞ=ðx þ yÞ,(b) x tan xy; and (c)coshðy þ cos xÞ,indicating
                           possible exceptional points and investigate these points.

                                                             2
                                                                2
                                                                    2
                                                                        2
                                            2
                                                    2
                     6.68.  Show that z ¼ lnfðx   aÞ þðy   bÞ g satisfies @ z=@x þ @ z=@y ¼ 0except at ða; bÞ.
                                                                        2
                                                            2
                     6.69.  Show that z ¼ x cosðy=xÞþ tanðy=xÞ satisfies x z xx þ 2xyz xy þ y z yy ¼ 0except at points for which x ¼ 0.
                                                 n
                                         x   y þ z
                     6.70.  Show that if w ¼     ,then:
                                         x þ y   z
   149   150   151   152   153   154   155   156   157   158   159